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 Introduction 

 Hemodynamic and metabolic pathways induced by 
hyperglycaemia, are thought to mediate end organ dam-
age in diabetic renal disease  [1–4] . Indeed strict glycaemic 
control  [5, 6]    and blood pressure lowering therapies in-
cluding those agents which provide blockade of the re-
nin-angiotensin system  [5, 7]  remain the most successful 
clinically applicable therapeutic interventions for diabet-
ic micro- and macrovascular complications.

  One such metabolic pathway facilitated by the hyper-
glycaemic environment which is characteristic of diabe-
tes is advanced glycation, where the free amino groups of 
proteins and amino acids are irreversibly modified as the 
result of complex non-enzymatic biochemistry  [8] . Al-
though physiologically, the accumulation of advanced 
glycation end products (AGEs) is mostly the result of ag-
ing and metabolism including senescent labelling of pro-
teins, it is also common in modern food preparation and 
processing  [9] . Therefore, it is postulated that both en-
dogenously  [10]  and exogenously  [10]  derived AGEs di-
rectly contribute to the body’s AGE pool.

  Of particular interest is that both glycaemic control 
 [11]  and blockade of the renin-angiotensin system  [12, 13]  
attenuate the accumulation of tissue AGEs, as do a num-
ber of agents which are often administered to diabetic 
patients including thiazolidinediones  [14]  and high-dose 
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 Abstract 

 A commonality among the chemically disparate compounds 
that inhibit the formation and accumulation of advanced 
glycation end products (AGEs) or their signalling pathways 
is their end organ protection in experimental models of dia-
betes complications. Although this group of therapeutics 
are structurally and functionally distinct with numerous 
mechanisms of action, the most important factor governing 
their therapeutic capability is clearly their ability to alleviate 
the tissue burden of advanced glycation, rather than the bio-
chemical mechanism by which this is achieved. However, it 
remains to be determined if it is the reduction in tissue AGE 
levels per se or inhibition of downstream signal pathways 
which is ultimately required for end organ protection. For 
example, a number of these agents stimulate antioxidant 
defences, modify lipid profiles and inhibit low-grade inflam-
mation. These novel actions emphasise the importance of 
further examination of the advanced glycation pathway and 
in particular the diverse action of these agents in ameliorat-
ing the development of diabetic complications such as ne-
phropathy.  Copyright © 2009 S. Karger AG, Basel 
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aspirin  [15, 16] . The anti-diabetic agent metformin can 
also lower circulating levels of reducing sugars  [17, 18]  
and consequently AGEs.

  Many of the pathogenic pathways known to mediate 
diabetic complications are associated with the accumula-
tion of AGEs and/or activation of their downstream sig-
nalling pathways. Among these, hyperlipidaemia is often 
another metabolic characteristic of patients with diabe - 
tes  [19, 20] . Furthermore, persistent hyperglycaemia also 
promotes a pro-oxidant environment, with a number of 
studies suggesting direct modulation and exacerbation of 
oxidative stress by AGEs  [21] . In addition to oxidative 
stress, tissue-specific inflammation also occurs, most 
likely resultant from signalling molecules including those 
activated by specific AGE receptors. These include 
amongst others, nuclear factor- � B  [22] , mitogen-activat-
ed protein kinases (MAPK)  [23]  and protein kinase C  [24]  
which facilitate chemotaxis of leukocytes and the pro-
duction of proinflammatory and profibrotic cytokines, 
all known to contribute to progressive diabetic microvas-
cular complications.

  Within the context of this review, we discuss the cur-
rent therapies available for lowering or preventing the ac-
cumulation of AGEs and those which prevent down-
stream signalling from receptor ligation. We investigate 
why such disparate agents have many common down-
stream outcomes, which may contribute to their end or-
gan protective properties in diabetes. It is prudent to sug-
gest that future therapies for microvascular complica-
tions need to address these common points via specific 
targeting of sites downstream of advanced glycation, in 
particular those not affected by current clinical regimens 
such as RAS blockade.

   Therapeutic Modulation of Advanced Glycation 

End Products 

  Advanced Glycation as a Specific Target for Diabetic 
Nephropathy 
 AGEs are a heterogeneous and complex group of mod-

ifications, which play an important role in the pathogen-
esis of diabetic nephropathy. AGEs are formed as a result 
of non-enzymatic biochemical reactions initiated as the 
Maillard reaction  [25] . Studies in type 1 diabetic patients 
show that AGE accumulation predicts the severity of mi-
cro- and macrovascular complications. Specifically, se-
rum AGE levels are significantly elevated with the pro-
gression to microalbuminuria and subsequently to overt 
nephropathy  [26] . In addition, skin collagen-associated 

AGE concentrations correlate with the severity of micro-
vascular complications in patients with long-standing 
type 1 diabetes  [11]  and with carotid intimal thickening 
 [27] . In type 2 diabetic patients, hypertension and isch-
emic heart disease are known to correlate with circulat-
ing AGE levels, suggesting that they may be potential bio-
markers of diabetic cardiovascular risk  [28] . Although 
AGE modifications are facilitated by the hyperglycaemic 
environment, they can be produced in other contexts. In-
deed, some studies demonstrate that AGE levels only 
loosely correlate with glycaemic control in the clinical 
setting  [11, 29] . This finding may explain the paradoxical 
progression of diabetic complications in some patients 
with comparatively good glycaemic control. Further to 
this, within the DCCT study, AGE levels were a better 
predictor of progression to complications than HbA 1C , 
with over a third of the variance in complications attrib-
uted to differences in AGE indices  [11] . This is consistent 
with the hypothesis that other factors such as oxidative 
stress may contribute to the production and accumula-
tion of AGEs in patients with good glycaemic control  [30, 
31] .

  There is no consensus on which AGE modifications 
are the most pathogenic in diabetes. Many of the AGE 
cross-linked moieties, such as pentosidine, have intrinsic 
fluorescence, and therefore tissue and plasma fluores-
cence may be used as surrogate markers of AGE modifi-
cations. A marked increase in fluorescence within the 
kidney  [32] , the retina  [33] , skin  [34, 35]  and other sites of 
diabetic microvascular disease  [36]  have been found with 
the progression of diabetes. Alterations in renal and he-
patic function are also associated with increased tissue 
fluorescence, reflecting the role of these organs in the 
clearance of AGEs  [37] . In addition, circulating levels of 
fluorescent AGEs correlate with complications in pa-
tients with type 1 and type 2 diabetes  [38, 39] .

  Other AGEs, such as N-carboxymethyllysine (CML), 
which are neither cross-links nor fluorescent, have been 
found to be elevated within serum of type 1 diabetic pa-
tients  [40] . Type 2 diabetic patients follow a similar pat-
tern with increases in circulating CML  [41]  and the pre-
cursor dicarbonyl methylglyoxal  [42] . Elevations in CML 
levels have been associated with the presence of micro-
vascular complications, including retinopathy and ne-
phropathy  [43] .

  AGEs can elicit their effects via ligation to receptors. 
Receptors for AGEs may be loosely grouped as either in-
flammatory, such as the receptor for advanced glycation 
end products (RAGE)  [44] , or those involved in AGE 
clearance (e.g. AGE-R1  [45] , AGE-R3  [46] , CD36  [47]  and 
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Scr-II  [48, 49] ). Vascular, renal, neuronal and haemato-
poietic cells are all known to express receptors for AGEs 
 [45, 46, 50–54] . 

  Therapeutics which Inhibit the Accumulation of AGEs 
 Numerous AGE inhibitors have been identified to 

date, which vary in their mechanisms of action and yet 
all have the same outcome, a reduction in tissue AGE bur-
den. Some target the precursors of AGEs, thus preventing 
their formation and accumulation, whilst others target 
receptor signalling. Indeed, a number of inhibitors ex-
hibit other benefits such as control of glycaemic indices 
and hyperlipidaemia in addition to reduction in AGE ac-
cumulation ( table 1 ).

  AGE Formation Inhibitors 
 Some of the earliest identified inhibitors of AGE-for-

mation, such as aminoguanidine  [55]  and OPB-9195  [56]  
are known to reduce AGE accumulation by scavenging 
free reactive carbonyl groups  [56–59] . More recently, 
novel therapeutics, such as the anti-hyperglycaemic agent 
metformin, trap reactive carbonyl molecules in addition 
to lowering blood glucose, properties most likely attribut-
able to its guanidine moiety  [60] . Aspirin has also dem-
onstrated the capacity to decrease AGE accumulation by 
targeting preformed intermediates  [15] , by chelation of 
copper and other transition metals which contribute to 
ROS production, as well as scavenging free carbonyls.

  Compounds which target the renin-angiotensin sys-
tem, including angiotensin-converting enzyme (ACE) 
inhibitors and angiotensin type 1 (AT1) receptor antago-
nists, are the most effective treatments for diabetic ne-
phropathy  [7, 61] . Not surprisingly, these agents have 
shown that in addition to their hemodynamic actions, 
they have the added benefit of reducing AGE accumula-
tion  [12, 13, 62, 63] . ACEi and AT-1 antagonists decrease 
AGE accumulation by trapping reactive carbonyls, de-
creasing the formation of hydroxyl and carbon-centred 
radicals and also via chelation of metal ions  [13] .

  LR-90 (methylene bis-[4,4 � -(2-chloropheylureido 
phenoxysiobutyric acid)]) has been identified as a potent 
inhibitor of renal and circulating AGE accumulation  [64, 
65] . It is thought to reduce AGE accumulation via its po-
tent metal chelating abilities and its interaction with re-
active carbonyl species  [65] . Moreover, its renoprotective 
benefits, such as improvements in albuminuria, creati-
nine clearance and glomerular sclerotic index, have been 
demonstrated in experimental models of both type 1 and 
type 2 diabetic nephropathy  [64, 65] .

  The benefits of vitamin B compounds in lowering 
AGE accumulation have been extensively investigated. 
Pyridoxamine, a vitamin B 6  derivative, prevents the for-
mation of AGEs from Amadori intermediates  [58, 59]  in 
addition to cleavage of 3-deoxyglucosone-reactive car-
bonyl intermediates  [66] . Not surprisingly, the inhibitory 
actions of pyridoxamine on AGE accumulation are asso-
ciated with concurrent improvements in renal function 

Table 1. Summary of AGE-lowering therapies with diverse mechanisms of action in diabetic complications

Therapy Tissue
AGEs

Circulating
AGEs

Glycemic
control

NF-�B
activity

ROS PKC/MAPK
activity

Benfotiamine � 69 � 69 � 19 � 116 � 116 � 116

Thiamine ND ND � 69 � 31 � 31 � 31

Pyridoxamine � 33, 67 ND ND ND � 115 ND
Aminoguanidine � 55 � � ND � 121 � 127

OPB-9195 � 118, 180 � 180 ND ND � 83, 118 � 83

ACE inhibitors � 62 � 13, 62, 111 � 101 � 13 � 13 � 127

AT1 antagonists � 63 ND ND � 137 � 13 � 129

Aspirin � 15 ND ND � 96, 140 � 96, 122 � 122

Metformin � 17 � 60 ND � 130 � 117 � 130

Thiazolidinediones ND � 117 � � 14 � ND
sRAGE ND ND ND � 92 � 119, 159 ND
Alagebrium chloride � 79 � 79 ND � 111 � 111 � 106

Carnosine � 73, 74 � 74 ND � 141 � 74 ND

� = Reported benefits with reference numbers; ND = not determined to date.
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in experimental models  [67] . More importantly, in phase 
II studies in patients with diabetic renal disease, a treat-
ment effect was observed on the rise in serum creatinine 
with pyridoxamine  [68] .

  Thiamine and benfotiamine are liposoluble deriva-
tives of vitamin B 1  which also exhibit AGE-lowering 
properties. In contrast to pyridoxamine, benfotiamine 
and thiamine are known to decrease the formation of re-
ducing sugars and intermediates from the polyol pathway 
 [69] . Both benfotiamine and thiamine have proven to be 
beneficial in experimental models of diabetic nephropa-
thy  [31, 70] . Furthermore, administration of benfotiamine 
to type 2 diabetic patients, who consumed a diet high in 
AGE content, reduced circulating AGE levels and mark-
ers of oxidative stress  [71] . However, another study has 
demonstrated a lack of effect of benfotiamine on compli-
cation-causing pathways in type 1 diabetic patients  [72] .

  Carnosine is a naturally occurring dipeptide which is 
known to exist in the brain as well as many other tissues. 
Importantly, it has a number of activities which aid in the 
reduction of AGE accumulation. Specifically, in addition 
to its anti-oxidant properties, carnosine also reacts with 
aldehydes such as aldose and ketose sugars preventing 
AGE formation  [73–76] . Its protective benefits have been 
demonstrated in models of experimental diabetic ne-
phropathy  [77] .

  Cleavage of Pre-Formed AGEs 
 Advanced glycation products form non-reversible co-

valent cross-links within and between tissue proteins and 
other organic compounds. Novel therapeutics such as N-
phenacylthiazolium bromide (N-PTB)  [78]  and alagebri-
um chloride (ALA)  [79]  cleave cross-links, allowing for 
the clearance of glycated proteins via scavenger receptors 
and renal excretion. The prototype N-PTB  [78]  had the 
ability to cleave  � -dicarbonyl intermediates in the AGE 
formation pathway, as was shown in tail collagen experi-
ments  [78] . Apparent toxicity and unexplainable increas-
es in blood pressure seen with PTB meant that it was not 
a realistic therapeutic for development in humans  [80] . A 
more stable thiazolium derivative, ALA  [79] , was report-
ed to catalytically cleave pre-established AGE cross-links 
between proteins, although the exact mechanisms of ac-
tion of ALA remain to be fully determined. Alagebrium 
has proven to have utility in human isolated systolic hy-
pertension and diastolic heart failure  [81] .

  Blockade of Cellular Receptors of AGEs 
 Binding of AGEs to proteins such as the receptor for 

advanced glycation end products (RAGE) has been shown 

to mediate intracellular signalling pathways, modulate 
gene expression and accelerate inflammation  [82] . Dou-
ble transgenic mice which over-express RAGE in addi-
tion to being deficient in iNOS (inducible nitric oxide 
synthase) exhibit renal hypertrophy, albuminuria, and 
elevated serum creatinine relative to their wild type mice 
 [83] .

  Soluble forms of RAGE produced either from alterna-
tive gene splicing (esRAGE)  [84]  or by proteolysis (sRAGE) 
 [85, 86]  show promise as a possible future therapeutic. 
Plasma levels of sRAGE have been shown to be lower in 
type 1 diabetic patients  [1, 87]  and elevated in type 2 dia-
betics. Indeed, with the development and progression of 
diabetic nephropathy, changes in circulating sRAGE con-
centrations are thought to be independently associated 
with renal function  [88–91] . In an experimental model 
representative of type 2 diabetic nephropathy, adminis-
tration of sRAGE was shown to diminish albuminuria 
and improve glomerulosclerosis  [92] .

  Thiazolidinediones (TZDs) are known ligands for 
peroxisome proliferator-activated receptor-gamma 
(PPAR- � ), which exhibit a number of beneficial actions 
in diabetic nephropathy independent of insulin sensitiza-
tion. TZDs, specifically rosiglitazone, have recently been 
identified as RAGE antagonists  [14, 93, 94] . Interestingly, 
rosiglitazone administered to type 2 diabetic subjects in-
creases soluble RAGE concentrations in addition to de-
creasing circulating AGE levels  [95] .

  Metabolic Disturbances 

 Abnormalities in Glycaemic Control 
 A range of metabolic abnormalities in addition to hy-

perglycaemia are seen in the diabetic milieu. However, it 
is obvious from studies in diabetic patients that eleva-
tions in circulating glucose are the predominant meta-
bolic abnormality and strict glycaemic control remains 
the critical but often unattainable strategy to halt the pro-
gression of complications  [5, 6] . As well as promoting the 
formation of AGEs, chronic hyperglycaemia is also asso-
ciated with increased inflammation and expression of 
 associated inflammatory cytokines, such as MCP-1  [96] , 
and connective tissue growth factor (CTGF)  [97] . In 
spontaneously diabetic rats strict glycaemic control in-
hibited the formation of pentosidine in renal tissue, com-
pared with hyperglycaemia which promoted AGE accu-
mulation and associated complications  [98] . Metformin, 
an insulin sensitiser, both lowers serum glucose levels 
and inhibits the formation of AGEs  [60, 99] . Combination 
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therapy of metformin with either pioglitizone or rosigli-
tazone resulted in improved long-term glucose handling 
 [100] . However, the influence of other AGE inhibitors on 
glycaemic control as well as cellular uptake of glucose has 
not yet been defined. Similar results in retinal cells using 
captopril  [101]  also showed a reduction in glucose-medi-
ated damage via GLUT-1 (membrane glucose transport 
protein) and the results of both these studies appear to be 
insulin-mediated occurrences.

  Hyperlipidaemia 
 Hyperlipidaemia is a comorbidity often seen in dia-

betic patients and is thought to be an important contrib-
utor to progressive micro- and macrovascular complica-
tions. This is most clearly demonstrated by the renopro-
tection which is seemingly afforded with HMG CoA 
reductase inhibitors  [102–104] . Interestingly, the majority 
of the AGE inhibitors assessed in this review ( table 1 ) 
have been reported to improve lipid profiles in diabetic 
patients  [99] , as well as in experimental models of dia-
betic complications  [31, 33, 64, 67, 69, 79, 105, 106] . Effects 
of RAS blockers, sRAGE and TZDs in plasma lipids have 
not been previously reported. It remains to be determined 
as to the specific mechanism by which these benefits on 
hyperlipidaemia are conferred. To date, none of these 
therapies, however, has been shown to increase plasma 
concentrations of HDL, although effects on reverse cho-
lesterol transport have been recently highlighted with 
 alagebrium, aminoguanidine  [107] , pyridoxamine and 
metformin  [108] .

  Effects of AGE Inhibition on Hemodynamic Pathways 
 The UK prospective diabetes study in type 2 diabetic 

patients highlights the importance of hemodynamic in-
fluences in the development of DN. Diabetic subjects ran-
domised to receive tighter blood pressure control exhib-
ited a concomitant reduction in microalbuminuria and 
clinical proteinuria  [5] . To date the most effective treat-
ments for both type 1 and type 2 diabetic patients to retard 
the progression of diabetic complications are anti-hyper-
tensives which target the renin-angiotensin system  [7, 
109] . Studies in the Ren-2 rat, a strain with genetic over-
activity of the RAS, show amelioration of renal injury fol-
lowing treatment with a selective inhibitor of AGE forma-
tion, ALT-946, which is an aminoguanidine derivative  [3] . 
In addition, infusion of AGEs into healthy rats induces 
diabetic-like changes in the renal RAS  [4] , suggesting that 
advanced glycation can modulate the RAS  [110]. 

  Benefits on the hemodynamic system, primarily via 
changes in blood pressure,  have been exhibited by a num-

ber of other therapeutics which also reduce the accumu-
lation of AGEs including alagebrium  [79, 111] , pyridox-
amine  [67] , OPB-9195  [112] , TZDs and carnosine  [113] .

  Reactive Oxygen Species 
 Reactive oxygen species are important intermediates 

in the formation of AGEs and are often excessively gener-
ated in the kidney in diabetes  [114] . In addition, concom-
itant dysregulation of anti-oxidant enzymes in diabetes 
leads to a state of oxidative stress  [114] . To date, it is un-
clear as to why antioxidants per se have demonstrated 
such poor renoprotection in humans, despite exciting 
positive preclinical research findings; however, it seems 
evident that therapies such as vitamins may not be the 
ideal antioxidant strategy in human DN. Most of the in-
hibitors listed in  table 1 , including vitamin B 6  derivatives 
 [115, 116] , metformin  [117] , OPB-9195  [112, 118] , ACEi 
 [13, 111] , AT1 antagonists  [13] , ALA  [111]  and sRAGE 
 [119] , have exhibited beneficial effects on excess superox-
ide generation within tissues, associated with improve-
ments in the development and/or progression of diabetic 
complications.

  Vitamin B-related therapeutics are effective scaven-
gers of ROS intermediates. Pyridoxamine inhibits super-
oxide radical generation as well as preventing the pro-
gression of neuropathy and retinopathy  [120] . In addi-
tion, benfotiamine and thiamine, vitamin B 1  derivatives, 
have shown beneficial effects in normalising ROS pro-
duction and reducing the activity of aldose reductase 
 [69] .

  Our group has shown that induction of diabetes re-
sults in a 50% increase in mitochondrial ROS produc-
tion when kidneys were examined ex vivo. Treatment 
with alagebrium in this STZ rat model resulted in at-
tenuation of both mitochondrial and cytosolic super-
oxide production  [106] . Furthermore, glycation of mi-
tochondrial proteins in diabetic rat kidneys has been 
associated with excess ROS production, inducing 
 abnormalities in the mitochondrial respiratory chain 
complexes  [121]  which were prevented with administra-
tion of aminoguanidine  [121] . Aspirin has also been 
shown to decrease reactive oxygen species production, 
in addition to increasing the production of NO in in vi-
tro experiments  [96, 122] .

  Inhibition of Protein Kinase C (PKC) Activity by AGE 
Inhibitors 
 There has been a growing body of evidence suggesting 

the central role of PKC, which is broadly involved in sig-
nal transduction from the plasma membrane to the nu-
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cleus in diabetes-induced vascular dysfunction  [123, 124] . 
PKC has 11 different isoforms many of which have been 
shown to be involved in diabetic complications in par-
ticular nephropathy  [24, 125, 126] .

  From all of the therapeutics targeting advanced glyca-
tion presented in this review, some 60% have been identi-
fied as having direct effects on PKC. We have recently 
reported the attenuation of PKC- �  phosphorylation and 
translocation with ALA in both in vivo models of DN and 
in vitro studies  [106] . It remains to be determined if this 
action of alagebrium on PKC- �  phosphorylation partly 
explains its renoprotective actions. Modulation of PKC 
activity within the diabetic kidney has also been exhib-
ited by various vitamin B derivatives  [31, 116] . Interest-
ingly, both ACEi and aminoguanidine prevent diabetes 
associated increases in PKC- �  activation in renal glo-
meruli  [127] .

  The effects of aminoguanidine and ACEi on PKC- �  
activity were also observed at other sites of vascular in-
jury including the retina and mesenteric vascular bed  [13, 
128] . In addition, AT-1 receptor antagonists also attenu-
ate diabetes-induced increases in PKC-epsilon activity 
within the diabetic heart  [129] . Furthermore, modulation 
of PKC has been demonstrated in vascular endothelial 
cells with the insulin-sensitizing agent metformin  [130]  
and the anti-thrombotic therapeutic aspirin  [122] . Hence, 
once again we encounter the multi-faceted pathways 
which are affected by blockade of advanced glycation or 
AGE-mediated signalling pathways.

  Nuclear Transcription Factor Kappa-B (NF- � B) 
 NF- � B is a transcription factor composed of two sub-

units, the most common of which are the p50 and p65 
subunits  [131]  which are thought to be important modu-
lators of diabetic complications. The active p65 subunit, 
in particular, is thought to be central in the activation of 
numerous genes including cytokines, adhesion mole-
cules, NO synthase, angiotensinogen and many other in-
flammatory and proliferative proteins implicated in the 
process of diabetic nephropathy  [22, 131] . NF- � B is acti-
vated by a range of stimuli including glucose  [132]  and 
ROS  [133] . AGEs are also involved in activation of NF- � B 
via a RAGE-dependent pathway leading to its transloca-
tion to the nucleus where it induces transcription of tar-
get genes such as IL-6 and TNF- �   [134] . The diverse ac-
tions of NF- � B and the capacity of various factors such 
as angiotensin II (AII) and AGEs to activate this tran-
scription factor  [135, 136]  are consistent with NF- � B 
playing a pivotal role in the pathogenesis of diabetic com-
plications.

  Pyrrolidine dithiocarbamate (PDTC) is a NF- � B in-
hibitor which has been used in both diabetic  [137]  and 
non-diabetic animal models of renal disease where it is 
renoprotective  [138] , although its toxicity does not allow 
for direct translation to the clinical setting. As with ROS 
and PKC, a number of currently available AGE-modulat-
ing therapies, almost 40% have been shown to affect NF-
 � B activation and translocation. Indeed, our group has 
demonstrated the importance of NF- � B in the pathogen-
esis of early renal macrophage infiltration in experimen-
tal diabetes, which could be modulated by interruption of 
the RAS  [137, 139] . Moreover, diabetes-induced increases 
in NF- � B activation are prevented by numerous thera-
peutics including metformin  [130],  aspirin  [140],  vitamin 
B derivatives  [116],  carnosine  [141],  and thiazolidinedio-
nes  [14] . It is possible that NF- � B, like PKC, is a central 
mediator which drives the downstream pathogenic con-
sequences of interactions between hemodynamic and 
glucose-dependent pathways in diabetic vascular com-
plications. However, approaches to inhibit NF- � B have 
not been explored fully in DN, most likely due to the in-
timate involvement of this transcription factor in a num-
ber of essential cellular processes including apoptosis.

  Inflammatory Cytokines and Growth Factors 
 Diabetic nephropathy was not traditionally consid-

ered to be an inflammatory condition; however, there is 
a growing body of evidence in recent times highlighting 
the central role of inflammation in its development and 
progression  [79, 142–150] . Indeed, both hemodynamic 
and metabolic factors involved in the development of di-
abetic complications such as nephropathy activate com-
mon downstream targets, including cytokines and 
growth factors  [151] . In particular, monocyte chemoat-
tractant protein (MCP-1), transforming growth factor- � 1   
  (TGF- � 1), CTGF and vascular endothelial growth factor 
(VEGF) have all been implicated in both experimental 
and human studies to be involved in the development and 
progression of diabetic nephropathy.

  Monocyte Chemoattractant Protein-1 (MCP-1) 
 MCP-1 is a potent chemokine which encourages 

monocyte/macrophage infiltration into the kidney, which 
likely contributes to the progression of DN. MCP-1 pro-
duction and secretion from damaged renal cells in diabe-
tes are postulated to be responses to hyperglycaemia sub-
sequently activating a number of signalling pathways 
 including those mediated by PKC and NF- � B  [152] . 
 Moreover, AGEs have also been identified as a specific 
stimulus for the production of MCP-1  [152, 153]  and are 
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secreted by mesangial, epithelial and glomerular podo-
cytes  [146, 152] . In an experimental model of type 2 dia-
betic nephropathy, a deficiency in MCP-1 resulted in a 
significant reduction in renal inflammatory infiltration 
and renoprotection. Furthermore, administration of 
propagermanium, an antagonist of the MCP-1 receptor, 
in a model of diabetic nephropathy resulted in reduced 
renal hypertrophy and macrophage infiltration in renal 
glomeruli  [154] . Indeed, it has been demonstrated that 
elevations in urinary excretion of MCP-1 may be a valid 
diagnostic marker of diabetic nephropathy in type 2 dia-
betic patients  [155] . These studies suggest that MCP-1 is 
a central mediator of diabetic renal disease, although its 
utility as a therapeutic target remains to be determined 
 [147] .

  Interestingly, many of the treatments which inhibit 
AGE accumulation or AGE-dependent signalling appear 
to be anti-inflammatory, although the specific cytokines 
which they affect appears to vary. To date, improvements 
in tissue MCP-1 expression are seen with a number of 
AGE inhibitors such as AT-1 antagonists  [156] , amino-
guanidine  [157] , aspirin  [97, 158] , sRAGE  [159]  and thia-
zolidinediones  [14] , all of which are known to modulate 
other pathways.

  Modulation of Growth Factors 
 Growth factors such as TGF- � , a fibrogenic cytokine, 

and CTGF, which is primarily induced by TGF- � 1, have 
been implicated as key effector molecules which promote 
diabetic renal disease. TGF- �  is a superfamily with three 
mammalian isoforms. The major isoform, TGF- � 1, is 
synthesised as an inactive or latent form, which subse-
quently is subjected to proteolytic cleavage leading to the 
generation of the active form. TGF- � 1 binds to the type 
II receptor and subsequently binds to the type I receptor 
 [160]  inducing phosphorylation and intracellular signal-
ling involving the SMAD proteins  [161] . In vitro studies 
have shown that a range of stimuli increase TGF- � 1 ex-
pression including hyperglycaemia, AGEs, stretch, AII, 
endothelin, lipids and various products of oxidative stress 
such as F 2  isoprostanes, all factors relevant to DN  [162–
167] . Ziyadeh’s group has previously examined the effects 
of long-term administration of a neutralizing TGF- � 1 
antibody on renal function and structure in diabetic  db/
db  mice  [168]  and STZ diabetic mice  [169] . Although 
most of the benefits have been attributed to TGF- � 1, Hill 
et al.  [170]  suggested that another isoform, TGF- � 2, is 
closely linked to fibrogenesis in diabetic nephropathy. To 
date, several anti-AGE therapies including alagebrium 
 [79] , AT1 antagonists  [171],  sRAGE  [92],  aminoguanidine 

 [172],  OPB-9195  [118]  and aspirin  [97]  have been shown 
to ameliorate diabetes-induced increases in TGF- � 1. The 
utility of TGF- � 1 as a target for therapeutic intervention 
in DN, however, is impeded by its essential role in inflam-
matory and immune processes. Therefore, it may be pref-
erable to modulate renal TGF- � 1 levels by an alternative 
approach such as therapies which focus on upstream ad-
vanced glycation pathways.

  Connective Tissue Growth Factor 
 Another prosclerotic cytokine, CTGF, has increased 

renal  [173, 174]  and, in particular, glomerular expression 
in diabetes  [173, 175]  and elevated both in early and late 
diabetic nephropathy in humans  [176] . Currently, a phase 
II study of FG-3019, a humanised anti-CTGF antibody, 
has been completed in patients with diabetic nephropa-
thy (microalbuminuria) which was well tolerated and im-
proved albuminuria. Subsequent studies are planned in 
diabetic patients with macroalbuminuria (http://www.
fibrogen.com/trials).

  CTGF expression is thought to be mediated by a num-
ber of factors common in diabetic nephropathy including 
TGF- � 1, hyperglycaemia and mechanical stretch  [173] . 
Interestingly, AGEs have been reported to specifically in-
crease CTGF expression, initially in fibroblasts  [177]  but 
subsequently in mesangial cells  [177] . Indeed within our 
own study in STZ-induced DN, the AGE inhibitor ami-
noguanidine ameliorated renal increases in CTGF  [174] . 
Moreover, aspirin has also been shown to prevent the di-
abetes-mediated increase in CTGF and mesangial expan-
sion in experimental models of DN  [97] . Currently, ef-
fects of other AGE-modifying regimens on CTGF have 
not been fully elucidated.

  Vascular Endothelial Growth Factor  
 VEGF is a cytokine whose major role in diabetes was 

initially considered to be central for the pathogenesis of 
diabetic retinopathy and in particular retinal neovascu-
larisation. Recent findings, however, have demonstrated 
the importance of VEGF within the diabetic kidney  [92, 
106, 118, 178, 179] . We and others have previously shown 
both in vivo and in vitro decreases in VEGF expression 
with a number of AGE inhibitors including alagebrium 
 [106] , ACE inhibitors  [106] , sRAGE  [92]  and OPB-9195 
 [118] . Despite this suppression of VEGF as a result of cur-
rent therapeutics, the benefits of VEGF suppression re-
main controversial with some studies suggesting that 
VEGF blockade is renoprotective  [179] , whereas recent 
studies, albeit in a non-diabetic context, suggest that 
VEGF is a critical renal survival factor and that blockade 
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may in fact promote renal damage  [180] . This is perhaps 
best demonstrated by the differential effects seen with 
anti-VEGF antibodies  [192, 193] . Studies on the renal ef-
fects of blockade of VEGF receptor (VEGFR) signalling 
are currently being performed. Indeed, a recent prelimi-
nary report has shown that SU5416, a VEGFR tyrosine 
kinase inhibitor, reduces albuminuria in  db/db  mice  [181] . 
In experimental models of DN, VEGF expression is also 
decreased by an inhibitor of AGE formation  [182]  and 
with the AGE cross-link breaker ALA  [106]  further con-
firming the link between AGEs and VEGF expression.

  Conclusions 

 Despite diverse molecular structures and varied mech-
anisms of action, each of the strategies reviewed here with 
effects on the tissue accumulation of AGEs and/or rele-
vant signalling pathways appear to confer their end organ 
protective benefits via a number of common downstream 

pathways. Almost all of these anti-AGE therapies reduce 
cellular oxidative stress, decrease inflammation and im-
prove circulating lipid profiles. These shared effects were 
observed in the context of providing end organ protection 
in a variety of models of diabetic complications. In addi-
tion, many (some 60%) of these agents reduce blood pres-
sure and activate protein kinase C activation. Interesting-
ly, only a few of these agents appear to have direct glucose-
lowering effects, and effects on NF- � B activation were not 
generally observed. Importantly, however, current treat-
ment strategies which target the RAS in clinical practice 
have little effect on lipid profiles, full-length RAGE ex-
pression, cellular glucose uptake and compartmentalised 
mitochondrial production of superoxide. In conclusion, 
this review extends our understanding of the relative im-
portance of AGE-mediated pathways in the pathogenesis 
of diabetic complications and, in particular, the common 
downstream events which warrant further investigation 
as therapeutic targets in ongoing preclinical or clinical 
development in addition to anti-AGE therapies per se.
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