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A non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids
contributes to the aging of macromolecules, whose process has been known to progress at an accelerated rate
under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation
products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-
linked, fluorescent protein derivatives termed advanced glycation end products (AGEs). AGEs elicit oxidative
stress generation and subsequently cause inflammatory and thrombogenic reactions in various types of cells
via interaction with a receptor for AGEs (RAGE), thereby being involved in vascular complications in diabetes.
In addition, mitochondrial superoxide generation has been shown to play an important role in the formation
and accumulation of AGEs under diabetic conditions. Further, we have recently found that a pathophysi-
ological crosstalk between AGE–RAGE axis and renin–angiotensin system (RAS) could contribute to the
progression of vascular damage in diabetes. These observations suggest that inhibition of AGE–RAGE–
oxidative stress axis or blockade of its interaction with RAS is a novel therapeutic strategy for preventing
vascular complications in diabetes. In this paper, we review the role of AGE–oxidative stress axis and its
therapeutic interventions in vascular complications in diabetes. This article is part of a Special Issue entitled:
Biochemistry of Mitochondria.
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1. Introduction

Diabetic retinopathy and nephropathy are the leading causes of
acquired blindness and end-stage renal disease (ESRD), respectively,
which could account for disabilities in patients with diabetes [1,2].
Also, in Japan, about 14,000 people per year become ESRD due to
diabetes, and its number is still increasing. Further, cardiovascular
disease (CVD) accounts for about 30–40% of death in diabetic patients
in Japan, and average life span in diabetic patients is about 9–13-years
shorter, compared with non-diabetic subjects. Two landmark clinical
studies, Diabetes Control and Complication Trial (DCCT) and the
United Kingdom Prospective Diabetes Study (UKPDS) [3,4] have
shown that intensive blood glucose or blood pressure (BP) control
significantly reduces the risk for the development and progression of
vascular complications in diabetes. However, strict control of blood
glucose is often difficult to maintain and may increase the risk of
hypoglycemia. Moreover, current therapeutic options for the treat-
ment of hypertension are far from satisfactory in diabetes. Therefore,
to develop novel therapeutic strategies that specifically target
vascular complications in diabetes is actually desired.
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Various hyperglycemia-elicited metabolic and hemodynamic
derangements such as increased formation of advanced glycation
end products (AGEs), enhanced production of reactive oxygen species
(ROS), stimulation of protein kinase C (PKC), and the activation of the
renin–angiotensin system (RAS) have been proposed to contribute to
vascular complications in diabetes [1,2]. However, which molecular
pathway is the most dominant one remains to be clarified.
Meanwhile, a recent follow-up study after DCCT, called DCCT-
Epidemiology of Diabetes Interventions and Complications (DCCT-
EDIC) Research, has provided us with a clue to the solution of this
problem. In this trial, all patients had received intensive therapy.
Therefore, the differences of blood glucose control between original
intensive therapy group and conventional one were abolished a
couple of years after the end of DCCT trial. However, those who had
been on original intensive therapy still maintained their advantage in
terms of reduced risk of the development and progression of diabetic
nephropathy and retinopathy during the EDIC periods, despite
hyperglycemia [5,6]. Intensive therapy during the DCCT resulted in
decreased progression of intima-media thickness and subsequently
reduced the risk of nonfatal myocardial infarction, stroke, or death
from cardiovascular disease by 57% 11 years after the end of the trials
[7,8]. Further, a recent follow-up study of UKPDS, called UKPDS80,
also has shown that benefits of an intensive therapy in patients with
type 2 diabetes are sustained after the cessation of the trial [9]. In this
GEs) and oxidative stress in vascular complications
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study, despite an early loss of glycemic differences between original
intensive therapy group and conventional one, a continued reduction
in microvascular risk and emergent risk reductions for myocardial
infarction and death from any cause were observed during 10 years of
post-trial follow-up [9]. These findings demonstrate that so-called
‘metabolic memory’ could cause chronic abnormalities and exert
carry-over effects in diabetic vessels that are not easily reversed, even
by subsequent, relatively good control of blood glucose. In other
words, these observations suggest a long-term beneficial influence of
early metabolic control, that is, legacy effect on the risk of vascular
complications and death in both type 1 and type 2 diabetic patients.
Among the various biochemical pathways implicated in vascular
complications in diabetes, biochemical nature of AGEs and their mode
of action are most compatible with the concept of ‘metabolic memory’
[10–12].

The concept of AGEs was first built up by a French chemist, L.C.
Maillard a century ago [10–12]. He reported that brown-fluorescent
products were generated when amino acids were heated with
reducing sugars. Since then, food chemists have long studied this
process as a source of flavor, color, and texture changes in cooked or
stored foods. But, in 1980s, it was realized that this process could also
occur in vivo [10–12].

Reducing sugars such as glucose can react non-enzymatically with
amino groups of proteins to form Amadori products [12–14]. Over the
course of days to weeks, these Amadori products undergo further
rearrangement reactions to form irreversibly cross-linked senescent
macroprotein derivatives called AGEs. The formation and accumula-
tion of AGEs have been known to progress at an accelerated rate under
diabetes. AGEs are hardly degraded and remain for a long time in
diabetic tissues even if glycemic control is improved. There is
accumulating evidence that AGEs elicit oxidative stress generation
in various types of cells through the interaction with a receptor for
AGEs (RAGE) and subsequently evoke inflammatory and thrombo-
genic reactions, thereby playing an important role in the development
and progression of vascular complications in diabetes [14–18].
Further, AGEs are reported to up-regulate RAGE expression in various
cell types and induce sustained activation of transcriptional factor
nuclear factor-κB (NF-κB) [17]. Therefore, it is conceivable that the
AGE–RAGE-induced oxidative stress generation further potentiates
the formation and accumulation of AGEs and subsequent RAGE
overexpression in diabetes. These positive feedback loops between
AGEs and RAGE-downstream pathways could make a vicious cycle,
thus providing a mechanistic basis for understanding why there could
exist the phenomenon of ‘metabolic memory’ in vascular complica-
tions in diabetes. In addition, we have recently found that a
pathophysiological crosstalk between AGE–RAGE axis and RAS could
contribute to the progression of vascular damage in diabetes as well
[19]. Taken together, these observations suggest that inhibition of
AGE–RAGE–oxidative stress axis or blockade of its interaction with
RAS is a novel therapeutic strategy for preventing vascular compli-
cations in diabetes. In this paper, we review the pathophysiological
role of AGE–oxidative stress axis and its therapeutic interventions in
vascular complications in diabetes.

2. Role of AGEs, RAS and pigment epithelium-derived factor
(PEDF) in diabetic retinopathy

2.1. Pericyte loss and dysfunction

Pericytes are elongated cells of the mesodermal origin, wrapping
around and along endothelial cells (ECs) of small vessels [20]. The
earliest histopathological hallmark of diabetic retinopathy is loss of
pericytes [20]. In parallel with loss of pericytes, several characteristic
changes including thickening of the basement membrane, hyperper-
meability, and microaneurysm formation are observed [20]. Since
pericytes have played an important role in the maintenance of
Please cite this article as: S. Yamagishi, et al., Role of advanced glycation
in diabetes, Biochim. Biophys. Acta (2011), doi:10.1016/j.bbagen.2011.0
microvascular homeostasis, loss of pericytes could predispose the
vessels to angiogenesis, thrombogenesis and EC injury, thus leading to
full-blown clinical expression of diabetic retinopathy [1].

Retinal pericytes accumulate AGEs during diabetes [21], which
would be expected to have a detrimental influence on pericyte
survival and function in diabetes. Indeed, AGE–RAGE-mediated ROS
generation has been shown to induce apoptotic cell death of retinal
pericytes by increasing the activity of caspase-3, a key enzyme in the
execution of apoptosis [22,23]. Further, we have found that beraprost
sodium, a prostacyclin analog or forskolin, an activator of adenylate
cyclase protects against the AGE-induced pericyte apoptosis by
suppressing ROS generation and subsequent RAGE overexpression
[24]. Since cyclic AMP elevating agents were known to block ROS
generation in neutrophils by inhibiting reduced nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity [25], NADPH
oxidase might be a source of ROS production elicited by AGEs and
be a target of beraprost sodium.

Pericyte dysfunction has also been considered one of the
characteristic features of the early phase of diabetic retinopathy [1].
AGEs act on pericytes to stimulate vascular endothelial growth factor
(VEGF) expression [23]. VEGF is a specific mitogen to ECs, also known
as vascular permeability factor, and is thought to be a pivotal factor in
the pathogenesis of proliferative diabetic retinopathy [26]. Further-
more, retinal VEGF level was found to be associated with the
breakdown of the blood–retinal barrier, thus being involved in
vascular hyperpermeability in background retinopathy [27,28].
These observations suggest that AGEs might be involved in diabetic
retinopathy by inducing VEGF overexpression in pericytes as well.

The local RAS is activated under diabetes [29]. Angiotensin II (Ang
II) stimulated intracellular ROS generation, decreased DNA synthesis
and simultaneously up-regulated VEGF mRNA levels in cultured
retinal pericytes, all of which are blocked by the treatment with
telmisartan, an Ang II type 1 receptor blocker (ARB) or an anti-
oxidant, N-acetylcysteine (NAC) [30,31]. Further, Ang II has been
shown to potentiate the deleterious effects of AGEs on pericytes by
inducing RAGE expression [32]. In vivo, AGE injection stimulated
RAGE expression in the eye of spontaneously hypertensive rats, which
was blocked by telmisartan. In vitro, Ang II-type 1 receptor-mediated
ROS generation elicited RAGE gene expression in retinal pericytes
through NF-κB activation [32]. In addition, Ang II augmented the AGE-
induced pericyte apoptosis [32]. These findings suggest the patho-
physiological crosstalk between the AGE–RAGE–oxidative stress axis
and the RAS in pericyte loss and dysfunction.

Pigment epithelium-derived factor (PEDF) is a glycoprotein that
belongs to the superfamily of serine protease inhibitors with complex
neurotrophic, neuroprotective, anti-angiogenic, anti-oxidative and
anti-inflammatory properties, any of which could potentially be
exploited as a therapeutic option for the treatment of vascular
complications in diabetes [33–37]. PEDF inhibited the AGE-induced
ROS generation and subsequently prevented apoptotic cell death of
pericytes by restoring bcl-2 gene expression [23]. Further, we have
found that anti-PEDF antibodies inhibit the growth-stimulating
effects of co-cultured ECs on pericytes [38,39]. These observations
suggest that PEDF could be an EC-derived mitogen or survival factor
for retinal pericytes. In addition, since Ang II-type 1 receptor
interaction decreased PEDF mRNA levels in ECs, suppression of EC-
derived PEDF production by Ang II may also be involved in
progression of diabetic retinopathy. Taken together, these findings
suggest that blockade of the pathophysiological crosstalk between the
AGE–RAGE system and the RAS or substitution of PEDF proteins might
be a promising therapeutic strategy for preventing pericyte loss and
dysfunction at early phase of diabetic retinopathy (Fig. 1).

In animal studies, treatment of diabetic rats for 26 weeks with
aminoguanidine, an inhibitor of AGE formation, prevented a 2.6-fold
accumulation of AGEs at branching sites of pre-capillary arterioles and
thereby prevented abnormal EC proliferation and significantly
end products (AGEs) and oxidative stress in vascular complications
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Fig. 1. Role of AGE–RAGE axis and RAS in early diabetic nephropathy. Ang II, Angiotensin II; GPx, glutathione peroxidase; AT1 receptor, Ang II type 1 receptor; NAC, N-acetylcysteine.

3S. Yamagishi et al. / Biochimica et Biophysica Acta xxx (2011) xxx–xxx
diminished pericyte dropout [40]. The derivative of vitamin B6,
pyridoxamine, a specific post-Amadori inhibitor, has also been shown
to prevent retinal capillary dropout in experimental diabetic retino-
pathy [41]. Moreover, an anti-oxidant, α-lipoic acid administration
decreased retinal 8-hydrooxy-2′deoxyguanosine (8-OHdG) and nitro-
tyrosine levels and subsequently inhibited retinal capillary cell
apoptosis in streptozotocin-induced diabetic rats [42]. These obser-
vations further suggest the active participation of the AGE–RAGE-
mediated ROS generation in pericyte loss in diabetic retinopathy.

2.2. Hyperpermeability, inflammation, thrombosis and angiogenesis

Vascular permeability in the retina plays a key role in a wide array
of sight-threatening eye diseases such as diabetic retinopathy, and
VEGF has been known as a major etiologic factor that increases retinal
vascular permeability [28,43,44]. Using a model system for non-
proliferative diabetic retinopathy, Liu et al. found that PEDF effectively
abated VEGF-induced vascular permeability [43]. PEDF may inhibit
the VEGF-induced vascular hyperpermeability via suppression of
NADPH oxidase-driven ROS generation [45,46]. Further, we have
found that PEDF inhibits AGE-signaling to vascular hyperpermeability
in rats [28]. Intravenous administration of AGEs to normal rats not
only increased retinal vascular permeability by stimulating VEGF
expression, but also decreased retinal PEDF levels [28]. Simultaneous
treatments with PEDF inhibited the AGE-elicited VEGF-mediated
permeability by down-regulating mRNA levels of p22phox and
gp91phox, membrane components of NADPH oxidase and subse-
quently decreasing retinal levels of an oxidative stress marker,
8-OHdG. PEDF also inhibited the AGE-induced vascular hyperperme-
ability in ECs by suppressing VEGF expression, whichwas evaluated by
transendothelial electrical resistance. In addition, PEDF decreased ROS
generation in AGE-exposed ECs by suppressing NADPH oxidase
activity via down-regulation of mRNA levels of p22phox and
gp91phox. This led to blockade of the AGE-elicited Ras activation
and NF-κB-dependent VEGF gene induction in ECs. These results
indicate that the central mechanism for PEDF inhibition of the AGE-
signaling to vascular permeability is by suppression of NADPH
oxidase-mediated ROS generation and subsequent VEGF expression.
Since vitreous level of PEDF was significantly lower in patients with
diabetic macular edema (DME) than in non-diabetic patients and
diabetic patients without retinopathy, and its level was significantly
Please cite this article as: S. Yamagishi, et al., Role of advanced glycation
in diabetes, Biochim. Biophys. Acta (2011), doi:10.1016/j.bbagen.2011.0
lower in patients with hyperfluorescent DME than in those with
minimally fluorescent DME [47], PEDF may play a protective role
against vascular hyperpermeability in diabetic retinopathy.

AGEs are implicated in the process of vascular inflammation as
well [48]. AGEs have been shown to increase leukocyte adhesion to
cultured retinal microvascular ECs by inducing intracellular cell
adhesion molecule-1 (ICAM-1) expression [49]. This phenomenon is
also apparent in non-diabetic mice infused with preformed AGEs,
which results in significant leukostasis and blood–retinal barrier
dysfunction in these mice. Since retinal VEGF has been found to
induce ICAM-1 expression, thus leading to leukostasis and breakdown
of blood–retinal barrier in vivo [50], the AGE-elicited pro-inflamma-
tory reactions could be partly mediated by VEGF induction. Moreover,
we have recently found that AGEs increase monocyte chemoattrac-
tant protein-1 (MCP-1) and ICAM-1 expression in microvascular ECs
through intracellular ROS generation, thereby inducing T-cell adhe-
sion to ECs [51,52]. Since MCP-1 levels in the vitreous fluids are
correlated with the severity of proliferative diabetic retinopathy [53],
AGEs would be one of the key pro-inflammatory factors for the
progression of diabetic retinopathy. In addition, AGEs not only
decrease endothelial nitric oxide synthase (NOS) mRNA levels in
ECs, but also reduce NO (nitric oxide) bioavailability by inactivating
NO to form peroxynitrite via ROS generation [54]. Reduced synthesis
and/or bioavailability of NO may accelerate vascular injury in diabetic
retinopathy because NO exerts anti-inflammatory and anti-thrombo-
genic properties in vivo [54].

PEDF inhibits the AGE-induced ICAM-1 and MCP-1 induction as
well as NO suppression in ECs by blocking the NADPH oxidase-
mediated ROS generation [28,52,54–56]. In vivo, administration of
PEDF or pyridoxal phosphate, an AGE inhibitor decreased retinal
levels of 8-OHdG, an oxidative stress marker and subsequently
suppressed ICAM-1 expression and retinal leukostasis in diabetic
rats [55]. Further, intravenous administration of AGEs to normal rats
increased ICAM-1 gene expression and retinal leukostasis, whichwere
blocked by PEDF [55]. PEDF inhibited diabetes- or AGE-induced RAGE
overexpression by blocking ROS-mediated NF-κB activation as well
[56]. Intravitreal injection of PEDF was also found to reduce vascular
hyperpermeability in rat models of diabetes, which was associated
with decreased levels of retinal inflammatory factors, including VEGF,
MCP-1 and ICAM-1 [57]. Since retinal PEDF expression was decreased
under diabetic conditions including diabetic situations [28,58], PEDF
end products (AGEs) and oxidative stress in vascular complications
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may be a therapeutic target for blocking hyperpermeability and
vascular inflammation in diabetic retinopathy as well.

Several researchers have reported that AGEs could augment ADP-
or serotonin-induced platelet aggregation via oxidative stress gener-
ation [59,60]. Further, AGEs inhibit prostacyclin production and
induce plasminogen activator inhibitor-1 (PAI-1) in ECs through an
interaction with RAGE [61]. These observations suggest that AGEs
have the ability to cause platelet aggregation and fibrin stabilization,
which could lead to retinal ischemia and VEGF induction, thereby
promoting diabetic retinopathy [62,63]. Since AGEs decrease intra-
cellular cyclic AMP concentrations in ECs and that cyclic AMP agonists
such as beraprost sodium and forskolin reduce the AGE-induced PAI-1
production, cyclic AMP elevating agents may also have a therapeutic
potential in diabetic retinopathy. In addition, we have found that AGEs
directly stimulate growth and tube formation of microvascular ECs,
the key steps of angiogenesis, through the interaction with RAGE
[64–66]. Our research findings have suggested that AGE–RAGE
interaction could increase VEGF gene expression in microvascular
ECs by NADPH oxidase-mediated ROS generation and subsequent
NF-κB activation via Ras-MAPK pathway [64–66].

ARBs and angiotensin-converting enzyme inhibitors (ACEIs) may
block the formation of reactive carbonyl precursors for AGEs in vitro
by chelating transitionmetals and inhibiting hydroxyl radicals, at both
pre- and post-Amadori steps [67]. In addition, we have found that an
ARB, olmesartan inhibits the AGE-evoked inflammatory and angio-
genic reactions in ECs by suppressing RAGE expression via its anti-
oxidative properties [68]. These findings suggest that RAS inhibitors
may exert beneficial effects on diabetic retinopathy partly via its
inhibitory properties on the AGE–RAGE axis.

3. Role of AGEs, RAS and PEDF in diabetic nephropathy

3.1. Mesangial cell loss and dysfunction

As the case in pericytes, AGEs induce apoptotic cell death and VEGF
expression in human cultured mesangial cells [69,70]. Mesangial cells
occupy a central anatomical position in the glomerulus, playing
crucial roles in maintaining structure and function of glomerular
capillary tufts [69,70]. They actually provide structural support for
capillary loops and modulate glomerular filtration by its smooth
muscle activity [70]. Therefore, it is conceivable that the AGE-induced
mesangial apoptosis and dysfunction may contribute in part to
glomerular hyperfiltration, an early renal dysfunction in diabetes.
Several experimental and clinical studies support the pathological
role for VEGF in diabetic nephropathy. Indeed, antibodies raised
against VEGF have been reported to improve hyperfiltration and
albuminuria in streptozotocin-induced diabetic rats [71]. Inhibition of
VEGF also prevents glomerular hypertrophy in Zucker diabetic fatty
rats, a model animal of type 2 diabetes with obesity [72]. Further,
urinary VEGF levels are positively correlated with urinary albumin to
creatinine ratio, and inversely associated with creatinine clearance in
type 2 diabetic patients [73]. These observations suggest that VEGF
overproduction elicited by AGEs may be involved in hyperperme-
ability and albuminuria at early phase of diabetic nephropathy.

Moreover, we have found that AGEs stimulate MCP-1 expression
in mesangial cells as well [69,70]. Increased MCP-1 expression
associated with monocyte infiltration in mesangial areas has been
observed at early phase of diabetic nephropathy [74]. Plasma MCP-1
was positively correlated with urinary albumin excretion rate in type
1 diabetic patients as well [75]. Therefore, AGE accumulation in the
glomerulus could be implicated in the initiation of diabetic nephrop-
athy via MCP-1 induction. Since we have recently found that
glucagon-like peptide-1 inhibits AGE-induced vascular cell adhesion
molecule-1 (VCAM-1) mRNA levels in ECs and mesangial cells by
suppressing RAGE expression via cyclic AMP elevation [76], cyclic
AMP may also block the AGE-signaling pathways in mesangial cells.
Please cite this article as: S. Yamagishi, et al., Role of advanced glycation
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3.2. Glomerulosclerosis and tubulointerstitial fibrosis

AGEs stimulate insulin-like growth factor-I, -II, platelet-derived
growth factor (PDGF) and transforming growth factor-β (TGF-β) in
mesangial cells, which in turn mediate production of type IV collagen,
laminin and fibronectin [70,77,78]. AGEs induce TGF-β overexpres-
sion in both podocytes and proximal tubular cells as well [70,78].
Recently, Ziyadeh et al. reported that long-term treatment of type 2
diabetic model mice with blocking antibodies raised against TGF-β
suppressed excess matrix gene expression, glomerulosclerosis, and
prevented the development of renal insufficiency [79]. These
observations suggest that the AGE-induced TGF-β expression plays
an important role in the pathogenesis of glomerulosclerosis and
tubulointerstitial fibrosis in diabetic nephropathy.

AGE formation on extracellular matrix proteins alters bothmatrix–
matrix and cell–matrix interactions, which is also involved in the
pathogenesis of diabetic glomerulosclerosis. For example, non-
enzymatic glycation of type IV collagen and laminin reduce their
ability to interact with negatively charged proteoglycans, increasing
vascular permeability to albumin [70]. Furthermore, AGE formation
on various types of matrix proteins impairs their degradation by
matrix metalloproteinases, contributing to basement membrane
thickening and mesangial expansion, hallmarks of diabetic nephrop-
athy [54]. AGEs including glycoxidation or lipoxidation products such
as carboxymethyllysine (CML), pentosidine, malondialdehyde-lysine
accumulate in the expanded mesangial matrix and thickened
glomerular basement membranes of early diabetic nephropathy,
and in nodular lesions of advanced disease, thus further suggesting
the active involvement of AGEs for advanced diabetic nephropathy
[80].

In vivo, administration of AGE-albumin to normal healthy mice for
4 weeks induces glomerular hypertrophy with overexpression of type
IV collagen, laminin B1 and TGF-β genes [81]. Chronic infusion of AGE-
albumin to otherwise healthy rats leads to focal glomerulosclerosis,
mesangial expansion, and albuminuria [82]. Further, diabetic RAGE-
overexpressing mice have been found to show progressive glomer-
ulosclerosis with renal dysfunction, compared with diabetic litter-
mates lacking the RAGE transgene [83]. AGEs and RAGE were present
to enhanced degrees in the diabetic kidney, and blockade of the AGE–
RAGE interaction decreased podocyte VEGF expression and albumin-
uria, which was associated with decreased numbers of inflammatory
cells to, and reduced TGF-β expression, in the glomerulus [84]. In
addition, diabetic homozygous RAGE null mice failed to develop
significantly increased mesangial matrix expansion or thickening of
the glomerular basement membrane [84]. Deletion of RAGE is also
reported to prevent diabetic nephropathy in the OVE26 type 1 mouse,
a model of progressive glomerulosclerosis and decline of renal
function [85]. Taken together, these findings suggest that activation
of AGE–RAGE system contributes to expression of VEGF and enhanced
attraction/activation of inflammatory cells in the diabetic glomerulus,
thereby setting the stage for mesangial activation and TGF-β
production; processes which converge to cause albuminuria and
glomerulosclerosis.

3.3. Crosstalk of the AGE–RAGE system with the RAS

Since Ang II increases intracellular ROS generation in renal cells, it
may stimulate the production of AGEs and further augment the AGE–
RAGE system in diabetic kidney [86,87]. There is accumulating in
vitro- and in vivo-evidence to suggest the pathophysiological crosstalk
between the RAS and AGE–RAGE axis in diabetic nephropathy. Indeed,
AGEs activate mesangial TGF-β–Smad system in cultured mesangial
cells via autocrine production of angiotensin II and subsequent
activation of type 1 receptor, which could probably lead to mesangial
cell hypertrophy and glomerular sclerosis in diabetic nephropathy
[77]. Further, we have found that an ARB, irbesartan blocks the AGE–
end products (AGEs) and oxidative stress in vascular complications
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RAGE-induced ROS generation, apoptosis, MCP-1, PAI-1 and TGF-β
overexpression in proximal tubular cells, thus protecting against
tubulointerstitial inflammation, fibrosis and atrophy in diabetic
nephropathy [88] (Fig. 2). In addition, irbesartan was recently found
to prevent the AGE-induced podocyte apoptosis and injury as well;
anti-apoptotic effect of irbesartan on AGE-exposed podocytes was
stronger than that of valsartan (Fig. 3). Since there is accumulating
evidence that podocyte apoptosis and injury are implicated in the
progression of diabetic nephropathy [89], blockade of the crosstalk
between the AGE–RAGE system and the RAS by RAS inhibitors such as
irbesartan is a therapeutic target for preventing diabetic nephropathy.

In animal models, Forbes et al. have reported that an ACEI, ramipril
decreases circulating and renal tissue levels of AGEs in experimental
diabetic nephropathy [86]. Candesartan, an ARB, reduces AGEs
accumulation and subsequent albuminuria by down-regulating the
NADPH oxidase p47phox component and inducible NOS expression
and by attenuating RAGE expression in type 2 diabetic KK/Ta mouse
kidneys [90]. Thomas et al. reported that valsartan, other ARB reduced
renal levels of AGEs in AGE-injected animals, whereas Ang II infusion
accelerated the formation and accumulation of AGEs in both glomeruli
and renal tubules in their models [87]. In addition, we have found that
administration of olmesartan medoxomil inhibits the increase of
systolic and diastolic blood pressure and urinary N-acetyl-beta-D-
glucosaminidase activity and prevent glomerulosclerosis in exoge-
nously AGE-injected rats [91]. In humans, an ACEI, ramipril treatment
has been shown to result in a mild decline of fluorescent non-CML-
AGEs and malondialdehyde concentrations in non-diabetic nephrop-
athy patients [92]. In type 2 diabetic subjects, a low-dose of valsartan
treatment was reported to decrease serum AGE levels in a blood
pressure-independent manner [93]. These observations suggest that
there could exist a pathophysiological crosstalk between the AGE–
RAGE system and the RAS in diabetic nephropathy. Blood pressure-
lowering independent beneficial effects of RAS inhibitors on diabetic
nephropathy [94] could be ascribed at least in part to its inhibitory
effects of the AGE–RAGE–oxidative stress system.

3.4. Role of peroxisome proliferator-activated receptor-γ (PPARγ)

Several papers have shown that PPARγ agonists block the
deleterious effects of AGEs and exert beneficial actions on diabetic
nephropathy [95,96]. Indeed, activation of PPARγ by rosiglitazone
inhibited AGE-induced inducible NOS expression, nitrite release,
Fig. 2. Role of AGE–RAGE axis and RAS in t

Please cite this article as: S. Yamagishi, et al., Role of advanced glycation
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fibronectin and type IV collagen production by mesangial cells
[95,96]. Rosiglitazone also attenuated the AGE-induced interleukin-
8 and soluble ICAM-1 generation by proximal tubular epithelial cells
through the suppression of signal transducer and activator of
transcription [97]. Further, rosiglitazone was reported to inhibit
renal extracellular matrix accumulation, fibronectin, type IV collagen
and PAI-1 production and subsequently reduce proteinuria in AGE-
injected rats [97].

Suppression of RAGE expression may be a molecular target of
PPARγ agonists [19,97–106]. Marx et al. reported that stimulation of
human ECs with PPARγ agonists such as rosiglitazone and pioglita-
zone decreased basal as well as tumor necrosis factor-alpha-induced
RAGE expression via suppression of NF-κB activation. They also
showed that PPARγ agonists decreased AGE-induced MCP-1 expres-
sion in ECs [98]. Further, we have found that telmisartan, an ARB,
down-regulates RAGE expression and suppresses its downstream
signalings in various cell types through its unique PPARγ-modulating
ability [100–104]. Indeed, telmisartan was found to reduce RAGE
mRNA levels and subsequently inhibit superoxide generation as well
as MCP-1 expression in mesangial cells, all of which were prevented
by GW9662, an inhibitor of PPARγ [102]. In addition, we have recently
found that nifedipine, but not amlodipine, a control calcium channel
blocker, decreased RAGE mRNA levels and subsequently reduced ROS
generation, and VCAM-1 and MCP-1 expression in AGE-exposed
mesangial cells, all of which were blocked by the simultaneous
treatment of GW9662 [106]. Although nifedipine did not affect
expression levels of PPARγ, it increased the PPARγ transcriptional
activity in mesangial cells. Taken together, these observations provide
unique beneficial aspect of telmisartsan and nifedipine on diabetic
nephropathy; it could work as an anti-inflammatory agent against
AGEs by suppressing RAGE expression in cultured mesangial cells via
PPARγ activation.

There are a couple of papers to suggest the protective effects of
PEDF against diabetic nephropathy. PEDF was decreased at both
mRNA and protein levels in the kidney of diabetic rats, whereas TGF-β
and fibronectin levels were increased in the same diabetic kidneys
[107]. In vitro-studies showed that high concentrations of glucose
significantly decreased PEDF secretion in human mesangial cells, thus
suggesting that hyperglycemia is a direct cause of the PEDF decrease
in the kidney. Further, PEDF blocked the high-glucose-induced
overexpression of TGF-β, a major pathogenic factor in diabetic
nephropathy, and fibronectin in mesangial cells [107]. Therefore,
ubular injury in diabetic nephropathy.
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decreased expression of PEDF in diabetic kidneys may contribute to
extracellular matrix overproduction and the development of diabetic
nephropathy. In vivo, overexpression of PEDF was found to alleviate
microalbuminuria, to prevent the expression of two major fibrogenic
factors, TGF-β and connective tissue growth factor (CTGF), and to
significantly reduce the production of an extracellular matrix protein
in the diabetic kidney [108]. These findings suggest that PEDF
functions as an endogenous anti-TGF-β and anti-fibrogenic factor in
the kidney. A therapeutic potential of PEDF in diabetic nephropathy is
supported by its down-regulation in diabetes; its prevention of the
overexpression of TGF-β, CTGF, and extracellular matrix proteins in
diabetic kidney; and its amelioration. Moreover, we have recently
found that PEDF inhibits the AGE-induced RAGE gene expression and
reduced ROS generation, inflammatory and fibrogenic gene expres-
sion (MCP-1, TGF-β, fibronectin and type IV collagen gene expression)
in cultured human proximal tubular cells [109]. PEDF administration
inhibited oxidative stress generation and RAGE, MCP-1 and TGF-β
gene induction in diabetic kidneys as well [109]. Given that RAGE is a
cell receptor for AGEs that mainly mediates the biological effects of
these macroproteins and that ROS generation works as a second
messenger of RAGE-downstream pathways forMCP-1 and TGF-β gene
induction [1,17,88,106], the results suggest that RAGE gene suppres-
sion in tubular cells would be a central mechanism by which PEDF
inhibited inflammatory and fibrogenic reactions in early phase of
diabetic nephropathy. Since PEDF activates PPARγ signaling in variety
of cells [110,111], PEDF may reduce RAGE gene expression in diabetic
kidney via PPARγ.

3.5. Clinical trial

Double-blinded, placebo-controlled, randomized clinical trials of
aminoguanidine (Pimagedine®), a prototype therapeutic agent for
the prevention of AGE formation (ACTION; A Clinical Trial In Overt
Nephropathy), were designed to evaluate the safety and efficacy of
aminoguanidine in retarding the rate of progression of renal disease in
patients with overt diabetic nephropathy. Pimagedine® therapy
reduced the 24-h total urinary proteinuria and prevented the decrease
in glomerular filtration rate and the progression of diabetic retinop-
athy in patients with type 1 diabetes [112]. However, the effects of
Pimagedine® on serum creatinine doubling were found not to be
significant; serum creatinine doubled in 26% of the placebo-treated
patients and in 20% of those who received Pimagedine (p=0.099).
This study is noteworthy in providing the first clinical proof of the
concept that inhibiting AGE formation can result in a clinically
Please cite this article as: S. Yamagishi, et al., Role of advanced glycation
in diabetes, Biochim. Biophys. Acta (2011), doi:10.1016/j.bbagen.2011.0
important attenuation of the serious complication of diabetes.
Reported side effects of aminoguanidine in clinical therapy were
gastrointestinal disturbance, abnormalities in liver function tests, flu-
like symptoms, and a rare vasculitis [112]. Further clinical trials of
aminoguanidine were terminated due to safety concerns.

4. Role of AGEs and RAS in diabetic macroangiopathy

AGEs formed on the extracellular matrix result in decreased
elasticity of vasculatures, and quench NO, which could mediate
defective endothelium-dependent vasodilatation in diabetes [113].
Indeed, increased oxidative stress generation induced by AGEs
inactivates NO to form peroxynitrite. AGE modification of low-density
lipoprotein (LDL) exhibits impaired plasma clearance and contributes
significantly to increased LDL in vivo, thus being involved in
atherosclerosis [114]. Binding of AGEs to RAGE results in generation
of intracellular ROS generation and subsequent activation of the
redox-sensitive transcription factor NF-κB in vascular wall cells,
which promotes the expression of a variety of atherosclerosis-related
genes, including ICAM-1, VCAM-1, MCP-1, PAI-1, tissue factor, VEGF,
and RAGE [1,17].

Bone marrow-derived circulating endothelial progenitor cells
(EPCs) are critical to vascular repair [115]. Diabetes is associated
with endothelial dysfunction, decreased EPC function and mobiliza-
tion, which could contribute to accelerated atherosclerosis and
increased risk for CVD in diabetic patients [115]. AGEs enhance
apoptosis and suppress migration and tube formation of late EPCs
through the interaction with RAGE via down-regulation of Akt and
cycloxygenase-2 [116]. AGEs have also been shown to cause a
reduction of length growth and EPC incorporation into the sprouts
in association with RAGE overexpression and p38 mitogen-activated
protein kinase (MAPK) activation [117]. Furthermore, AGE-modifica-
tion of vascular substrates impair vascular repair by inhibiting EPC
adhesion, spreading and migration via glycation of Arg–Gly–Asp
(RGD) motif of fibronectin [118]. In addition, C-reactive protein (CRP)
has been found to increase oxidative stress generation, alter anti-
oxidant defenses, and subsequently induces apoptosis of EPCs via
RAGE induction [119]. These observations suggest that AGE–RAGE
axis affects collateral artery formation after myocardial ischemia
directly and indirectly by impairing vascular repair and inactivating
NO, a mediator of angiogenic signal of VEGF [120]. Recently, skin
autofluorescence, an established noninvasive measure of AGE accu-
mulation, but not serum pentosidine, was independently associated
with low circulating EPCs in subjects with ESRD [121].
end products (AGEs) and oxidative stress in vascular complications
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Further, AGEs have the ability to induce osteoblastic differentiation
of microvascular pericytes, which would contribute to the develop-
ment of vascular calcification in accelerated atherosclerosis in
diabetes as well [122]. The interaction of the RAS and the AGE–
RAGE system in the development of and progression of diabetic
vascular complication has also been proposed. The AGE–RAGE
interaction augments angiotensin II-induced smooth muscle cell
proliferation and activation, thus being involved in accelerated
atherosclerosis in diabetes [123].

Smooth muscle cell proliferation, migration, and neointimal expan-
sion upon arterial injury were strikingly suppressed in homozygous
RAGE null mice compared with those observed in wild-type littermates
[124]. These data highlight key roles for RAGE in modulating smooth
muscle cell properties after injury and suggest that RAGE is a logical
target for suppression of untoward neointimal expansion consequent to
arterial injury. Diabetic RAGE(−/−)/apoE(−/−) mice had significantly
reduced atherosclerotic plaque area, which is associated with attenu-
ation of leukocyte recruitment, decreased expression of pro-inflamma-
tory mediators, reduced oxidative stress and AGE accumulation [125].

5. Conclusion

Inhibition of the AGE formation and blockade of the AGE–RAGE
system and its crosstalk with the RAS may become novel therapeutic
strategies in vascular complications of diabetes.
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