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BSTRACT
bjective Advanced glycoxidation end products (AGEs),
he derivatives of glucose-protein or glucose-lipid inter-
ctions, are implicated in the complications of diabetes
nd aging. The objective of this article was to determine
he AGE content of commonly consumed foods and to
valuate the effects of various methods of food prepara-
ion on AGE production.
esign Two-hundred fifty foods were tested for their content

n a common AGE marker �N-carboxymethyllysine (CML),
sing an enzyme-linked immunosorbent assay based on an
nti-CML monoclonal antibody. Lipid and protein AGEs
ere represented in units of AGEs per gram of food.
esults Foods of the fat group showed the highest amount
f AGE content with a mean of 100�19 kU/g. High values
ere also observed for the meat and meat-substitute
roup, 43�7 kU/g. The carbohydrate group contained the
owest values of AGEs, 3.4�1.8 kU/g. The amount of
GEs present in all food categories was related to cooking

emperature, length of cooking time, and presence of
oisture. Broiling (225°C) and frying (177°C) resulted in

he highest levels of AGEs, followed by roasting (177°C)
nd boiling (100°C).
onclusions The results indicate that diet can be a signifi-
ant environmental source of AGEs, which may constitute a
hronic risk factor for cardiovascular and kidney damage.
Am Diet Assoc. 2004;104:1287-1291.
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dvanced glycoxidation end products (AGEs) consti-
tute a group of heterogeneous moieties produced
endogenously from the nonenzymatic glycation of

roteins, lipids, and nucleic acids (1,2). In addition, AGEs
an also form from lipid peroxidation, receiving the name
dvanced lipoxidation end products (ALEs) (3,4). The
umber of structurally identified AGEs is growing, and
N-carboxymethyllysine (CML) is one of the better char-
cterized end products frequently used as an AGE/ALE
arker in laboratory studies (5).
The pathologic effects of AGEs/ALEs are related to

heir ability to modify the chemical and biological prop-
rties of native molecules by cross-link formation and
heir ability to bind to several cellular receptors (6,7)
romoting cellular oxidative stress and cell activation,
mportantly of the immune system (8). AGEs have been
ssociated with numerous diabetic (9-15) and renal com-
lications (16,17), as well as with Alzheimer’s disease
18).

An unrecognized source of AGEs and ALEs is the mod-
rn diet, due to heat treatment of foodstuffs (19-22). Re-
ently, human studies confirmed that about 10% of diet-
erived AGEs are absorbed and correlate with circulating
nd tissue AGE levels (23). Dietary AGE restriction re-
ulted in significant reduction of circulating AGE levels
nd disease progression in animal models of atheroscle-
osis (24) and diabetes (25,26), as well as in diabetic
atients with normal renal function (27) and in nondia-
etic patients with renal failure (28). These findings sug-
est that dietary AGEs may constitute a chronic environ-
ental risk factor for tissue injury. Prospective

nterventional studies modulating the dietary AGE con-
ent will be necessary to prove the clinical benefits of low
GE diets; however, availability of data on dietary AGE
ontent is currently lacking. We therefore evaluated the
GE content in representative, commonly consumed

oods and discuss our findings.

ETHODS
rom a menu survey of hospital cafeteria items and local
ating establishments, a total of 250 foods were deter-
ined to represent foods and culinary techniques typical

f a multiethnic urban population. Test items were ob-
ained from Mount Sinai Hospital’s central kitchen or
ere prepared in the Clinical Research Center. Samples

f convenience and fast foods were purchased from local
stablishments. Foods were prepared for standard cook-
ng times with commonly used cooking methods: boiled in
ater (100°C), broiled (225°C), deep fried (180°C), oven
ried (230°C), and roasted (177°C).
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Food-derived AGEs and AGE precursors represent a
ery large number of compounds, and it is presently im-
ossible to account for all of them. Previous studies, how-
ver, have shown that they include the well-characterized
N-carboxy-methyl and �N-carboxy-ethyl-lysine (CML,
EL) derivatives that we have chosen to measure in this
tudy (2-5,22).
Protein and lipid-linked AGE determination was based

n a competitive enzyme-linked immunosorbent assay,
sing a well-characterized anti-CML monoclonal anti-
ody (4G9) (29-31) and expressed as AGE units per mil-
igram of protein or lipid. This AGE value was then mul-
iplied by protein and lipid per gram of food (ESHA Food
rocessor database version 7.1, 1998, Salem, OR, and
anufacturer information for convenience items). The

ombined protein and lipid-associated AGE content of
ach sample was expressed as mean�standard error of
he mean units per gram of food or units per milliliter of
iquid. For data presentation, AGE content was expressed
n kilounits (kU) per gram or per milliliter or for a stan-
ardized serving size.

ESULTS
he AGE content for each food group, classified as per
merican Diabetes Association exchange lists, is shown

n Tables 1 through 6. (Tables 2-6 are available on the
n-line version of the Journal.)
The fat group contained the highest mean AGE food

alues. Among the items of this group, spreads, including
utter and processed cream cheese, margarine, and may-
nnaise, showed the highest amounts, followed by oils
nd nuts (Tables 1 and 2). Thus 5-g servings of butter and
il contained 1,300 and 450 kU AGE, respectively.
High AGE values were also observed for the meat and
eat-substitute groups (43�7 kU/g). Within this group,
ighest levels were determined for cheeses, followed by
eef and poultry, tofu, fish, and whole eggs (Tables 1 and
). In all categories, exposure to higher temperature
chieved a greater AGE content for equal weight of the
ample. The trend for AGE values achieved was oven-
rying�deep frying and broiling�roasting�boiling. Thus,
0-g servings of chicken breast prepared with these meth-
ds yielded 9,000, 6,700, 5,250, 4,300, and 1,000 kU AGE,
espectively.

The carbohydrate group contained relatively low
mounts of AGE (3.4�1.8 kU/g). Within this category, the
ighest AGE content was reported in processed items,
ollowed by grains, legumes, and starchy vegetables and
reads (Tables 1 and 4). The lowest AGE values were
etected in the milk group, followed by vegetables and
ruits (Tables 1 and 4), although infant formula contained
100-fold more AGE than natural milk.
Microwaving was shown to increase AGE content sim-

lar to boiling cooking methods (data not shown).

ISCUSSION
ur data support the premise that nutrient composition,

emperature, method, and duration of heat application

ffect AGE generation in foods during cooking (19,21). d

288 August 2004 Volume 104 Number 8
onsistent with earlier studies (27,28), there is a clear
elationship between AGE content and nutrient compo-
ition. Thus, foods high in lipid and protein content show
he highest AGE levels. This may result from high levels
f free radicals released in the course of various lipoxida-
ion reactions, which catalyze the formation of AGEs and
LEs on amine-containing lipids during cooking of fats
nd meats. Glycoxidation and lipoxidation are promoted
y heat, absence of moisture, and presence of metals,
mportant factors in the production of edible fats (32,33).
hus, CML-like AGEs also form in oils, although protein
ontent is negligible.
Foods that are composed mostly of carbohydrates, eg,

tarches, fruits, vegetables, and milk, contain the lowest
GE concentrations. However, within this group, com-
ercially prepared breakfast foods and snacks show sig-

ificant AGE content, eg, 30-g servings of toasted frozen
affles and biscotti contained 1,000 kU AGE and Rice
rispies (Kellogg Co, Battle Creek, MI) contained 600
U/serving. Items of similar nutrient composition, such
s toasted bread, contain only 30 kU AGE/serving. In-
eed, several food processing techniques promote glycoxi-

Table 1. Advanced glycoxidation end products (AGE) content of
selected foods prepared by standard cooking methods

Food item
AGEa (kU/g or /mL of
food)

Fats
Almonds, roasted 66.5 kU/g
Oil, olive 120 kU/mL
Butter 265 kU/g
Mayonnaise 94 kU/g
Proteins
Chicken breast, broiled�15 min 58 kU/g
Chicken breast, fried�15 min 61 kU/g
Beef, boiled�1 h 22 kU/g
Beef, broiled�15 min 60 kU/g
Tuna, roasted�40 min 6 kU/g
Tuna, broiled�10 min 51 kU/g
Cheese, American 87 kU/g
Cheese, Brie 56 kU/g
Egg, fried 27 kU/g
Egg yolk, boiled 12 kU/g
Tofu, raw 8 kU/g
Tofu, broiled 41 kU/g
Carbohydrates
Bread, whole-wheat center 0.54 kU/g
Pancake, homemade 10 kU/g
Milk, cow, whole 0.05 kU/mL
Milk, human, whole 0.05 kU/mL
Enfamil (infant formula) 4.86 kU/mL
Apple 0.13 kU/g
Banana 0.01 kU/g
Carrots 0.1 kU/g
Green beans 0.18 kU/g

aAGE denotes �N-carboxymethyl-lysine (CML)-like immunoreactivity, assessed by en-
zyme-linked immunosorbent assay based on monoclonal antibody (4G9) (30,31).
ation. Processing of some ready-to-eat cereals, which
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ncludes heating at temperatures over 230°C, may ex-
lain the high AGE content of these products. Also, many
ereals and snack-type foods undergo an extrusion pro-
ess under high pressure to produce pellets of various
hapes and densities. This treatment causes major chem-
cal changes, thermal degradation, dehydration, depolar-
zation, and recombination of fragments all of which can
romote glycoxidation (34). The AGE difference between
retzels (500 kU/serving) and popcorn (40 kU/serving)
ight be explained by their different preparation methods.
Temperature and methods of cooking seem to be more

ritical to AGE formation than cooking time. This is evi-
enced in the higher AGE values of samples broiled or
rilled at 230°C for a short time when compared with
amples boiled in liquid media for longer periods. Thus, a
erving of chicken breast boiled for 1 hour yielded 1,000
U AGE, while the same item broiled for 15 minutes
ielded 5,250 kU AGE.
The data reported in Tables 1 through 6 enabled us to

stimate dietary AGE intake using food records and to
evelop diets with variable AGE content, which were
hen applied in designing dietary intervention studies in
umans (27,28). In a preliminary survey of the usual
aily AGE intake, we analyzed 3-day food records from
ealthy individuals (n�34). Mean daily AGE intake was
6,000�5,000 kU AGE. These data were used to define a
igh- or low-AGE diet, depending on whether the esti-
ated daily AGE intake is significantly greater or less

han 16,000 kU AGE. A similar investigation in 40 type
diabetic patients showed a daily AGE intake of

8,000�7,000 kU AGE, with major proportions of AGE
ontributed by broiled, fried, grilled, and roasted meat
nd meat alternatives. Diabetic patients tended to con-
ume more AGE because of the consumption of larger
ortions of meals rich in meats. Alternative cooking
ethods, such as boiling and stewing, allow daily AGE

ngestion to be reduced by up to 50% keeping the same
rimary nutrients.
The new information presented herein can be easily

ntegrated into meal patterns that are consistent with
hose currently recommended against cardiovascular dis-
ase and cancer in the general population. Firstly, re-
uced intake of AGEs can be achieved by reducing high-
GE sources such as full-fat cheeses, meats, and highly
rocessed foods, and increasing the consumption of fish,
rains, low-fat milk products, fruits, and vegetables.
hese guidelines are features of The Dietary Approaches
o Stop Hypertension (35) and similar to directives of the
merican Heart Association (36). Secondly, data on meat
nd meat substitute preparation clearly showed marked
ifferences in the AGE content of food items subjected to
ow vs high temperature treatment. Consumers can be
irected to the time-honored low-AGE-producing culinary
echniques of boiling, poaching, and stewing to prepare
alatable menu items. The American Cancer Society also
ecommends avoidance of exposure of meats to “exces-
ive” heat (37,38) to limit production of potentially carci-
ogenic compounds generally forming at greater temper-
tures (�250°C) or when applied for longer periods (�1
our) (39). Third, the importance of selecting unprocessed
utrients when possible cannot be overemphasized. For

nstance, AGE content in infant formula (Enfamil) is

ound to be 100-fold higher than in human or bovine milk
40). Thus, since AGEs are known immune cell modula-
ors (8), the introduction of infant diets, rich in AGE
ntigens, may account for the rise in childhood autoim-
une diseases such as Type 1 Diabetes (T1D), as sug-

ested in animal studies for this disease (41).
A limitation of the present data is reliance on CML, a

ingle AGE marker, while many other AGEs/ALEs are
enerated in food (20,21), albeit of unknown significance.
n practical terms, however, CML is a commonly mea-
ured AGE/ALE compound, used routinely as an indica-
or of the AGE/ALE burden in numerous animal and
uman studies (22-31,41).
The results presented herein are preliminary, and sys-

ematic food analyses are needed to reveal the chemical
ature of pathogenic AGE/ALE substances. This report
rovides the rationale and the initiation point for a data-
ase to be used in clinical studies aiming to evaluate this
ewly identified dietary factor as a risk for diabetes and
ther chronic disorders. These findings also support re-
valuation of contemporary meal patterns in the context
f major health epidemics of today.

ONCLUSIONS
his article reports on the high content of AGEs in com-
only consumed foods, and notes that this is primarily

he result of the dry-heat treatment of protein- and lipid-
ich foods. This initial body of data can be used as a basis
or the design of clinical studies to investigate the effects
f manipulating dietary AGE intake to determine
hether simple adjustments in the methods of food prep-
ration can have a significant positive impact on health
utcomes. Results of these studies will support reevalua-
ion of contemporary dietary habits and enable develop-
ent of meal pattern recommendations to enhance well-

eing and limit disease progression. A potential benefit of
his knowledge regarding AGE sources is that it will
nable individuals to reduce a previously unrecognized
ietary risk factor that contributes to the pathologic se-
uelae seen in normal aging, diabetes, and kidney dis-
ase.
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