
Review

Advanced glycation and retinal pathology during

diabetes

Alan W. Stitt, Tim M. Curtis

Centre for Vision Science, Queen’s University of Belfast, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12

6BA, Northern Ireland, UK

Correspondence: Alan W. Stitt, e-mail: a.stitt@qub.ac.uk

Abstract:

Of all microvascular complications of diabetes mellitus, retinopathy remains the most common. This disease presents major

therapeutic problems for the ophthalmologist and despite many decades of intense research it still constitutes a major cause of

blindness in the Western world. This review outlines the pathological characteristics of diabetic retinopathy and proposes a link

between disease progression with the formation and accumulation of advanced glycation endproducts (AGEs). AGEs form in vivo

from the reaction of glucose and/or �-oxaloaldehydes leading to chemical modifications on the amino groups of proteins, lipids and

DNA. These heterogenous adducts can modify the structure and function of proteins and lead to intra-molecular and intermolecular

cross-link formation. As reported in a range of clinical investigations and determined by mechanistic in vitro and in vivo studies,

AGEs accumulate in the diabetic retina where they may be effectors of retinal vascular and neural cell dysfunction. Evidence now

points towards a pathogenic role for advanced glycation in the initiation and progression of diabetic retinopathy and this review will

examine the current state of knowledge of AGE-related pathology in the retina at a cellular and molecular level. It will also describe

how ongoing pharmaceutical strategies to inhibit AGE formation and thereby attenuate their pathogenic influence during chronic

hyperglycemia may play a significant role in the treatment of diabetic retinopathy.
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Introduction to diabetic retinopathy

Retinopathy is one of the commonest microvascular

complications of diabetes and still a major cause of

registerable blindness in the working population of

many developed countries [20]. With type 1 diabetes

of 10 years duration, the prevalence of diabetic retino-

pathy is around 80% and this increases to ~95% by 20

years [40, 41]. Overall, diabetic retinopathy is slightly

less common in type 2 patients but is still the most

frequent microvascular complication suffered by this

group [40]. There are few preventative measures and

sight-threatening diabetic retinopathy can, at present,

only be treated or contained to some extent by focal or

pan-retinal laser photocoagulation or vitreoretinal sur-

gery but often at the expense of functional retina and

visual performance [62].

Diabetic retinopathy is quintessentially a disease of

the intra-retinal vasculature, although there is a subtle
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concurrent retinal neuropathy characterised by early

electroretinogram (ERG) defects [96], decreased col-

our contrast sensitivity, neuronal/glial abnormalities

and eventual depletion of ganglion cells [23, 46].

Choroidal vascular changes may also occur, however,

it remains uncertain how this influences vision. Dia-

betic retinopathy is traditionally classified into two

clinical forms; non-proliferative and proliferative.

The non-proliferative form of the disease is by far the

most common and in a significant number of cases it

progresses to sight-threatening proliferative diabetic

retinopathy [40]. The greatest risk of visual loss oc-

curs in the later phases of diabetic retinopathy with

the development of macular edema and retinal neo-

vascularisation, the former being a direct consequence

of blood retinal barrier breakdown and the later to

widespread retinal ischemia [2].

The histopathology characteristic of non-proli-

ferative diabetic retinopathy is a focus of this review

and it is important to note that many of these lesions

are temporally separated from more subtle physio-

logical changes in the retinal vessels. It is apparent

that diabetes-related retinal vascular dysfunction in

humans and animal models commences within weeks

of diabetes onset and is characterised by increased

blood flow, impaired autoregulation, and abnormal

permeability to plasma proteins [50, 70]. Non-

proliferative diabetic retinopathy is manifest by ex-

cessive capillary permeability leading to inner blood

retinal barrier (iBRB) dysfunction [4], capillary base-

ment membrane (BM) thickening [76], pericyte and

smooth muscle depletion [22, 36], microaneurysm

formation [80], and thereby widespread non-perfusion

(Fig. 1A). In the proliferative phase, ischemia drives

pre-retinal neovascularisation in a significant propor-

tion of diabetic patients (Fig. 1B) with risk of vision

loss through vitreal haemorrhage, fibrogliosis and

tractional retinal detachment. Sight-threatening dia-

betic retinopathy and its sequelae can be treated or

contained to some extent by laser photocoagulation or

vitreoretinal surgery, but at the expense of large areas

of functional retina and associated visual field loss

(Fig. 1C).

The pathogenic basis of diabetic retinopathy is not

wholly understood at a cellular and molecular level

and the options for effective therapeutic intervention

early in the disease process remain extremely limited.

Major international epidemiological trials have estab-

lished that hyperglycemia is a principal and underly-

ing cause of this disease in both Type 1 and Type 2,
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Fig. 1. Clinicopathological hallmarks of diabetic retinopathy. (A)
Fluorescein angiogram from a patient with non-proliferative diabetic
retinopathy. The retinal microvascular tree is damaged with large
segments of capillary beds lost. Subsequently there are areas of is-
chaemia, exemplified by large areas of retina which are non-
perfused (*). Arrows indicate microaneurysms on the arteriolar side
of the circulation. (B) Fundus image from a patient with proliferative
diabetic retinopathy showing areas of neovascularisation (arrow) in
the pre-retinal space. (C) Pan-retinal laser photocoagulation (PRP)
has been conducted on a patient with proliferative diabetic retinopa-
thy. This fundus demonstrates the typical scarred appearance of the
peripheral retina, although the macular region in the centre of the
image is clear of neovascularisation



Diabetes [16, 97]. Failure to regulate blood glucose

leads to biochemical abnormalities in diabetic cells and

tissues and the range of pathologic lesions in retina and

other vascular beds are indicative of a complex interplay

between hyperglycemia-induced metabolic and hae-

modynamic pathways. Within this context it has been

shown in diabetic dogs that good glycemic control

following an initial 2.5 year period of poor control is

not protective against retinopathy [19]. Similar stud-

ies have been demonstrated in long-term diabetic rats

that gradually recovered from early diabetes [87].

This strongly suggests that so-called “hyperglycemic

memory” produces a poorly understood, chronic ab-

normality in the retinal microvasculature of diabetics

that is not easily reversed, even by subsequent, rela-

tive normoglycemia.

It is clear that the pathogenesis of diabetic retino-

pathy is highly complex and multifactorial. Mecha-

nistic studies have shown that short or long-term ex-

posure to the diabetic milieu may result in a raft of

biochemical and metabolic abnormalities occurring

over many years, however it remains uncertain how

much each contributes to retinal pathophysiology

over long-term diabetes. In addition to formation of

advanced glycation endproducts (AGEs) (the focus of

this review), hyperglycemia can cause increased flux

through the polyol or hexosamine pathways and asso-

ciated alterations in the redox state of pyridine nu-

cleotides [65, 93], the de novo synthesis of dia-

cylglycerol (DAG) leading to the over-activation of

several isoforms of protein kinase C [44, 104], exces-

sive production of reactive free radicals perhaps caus-

ing oxidative stress [14, 47], changes in blood rheol-

ogy and haemodynamics [24, 34, 94] and over-

activation of the renin-angiotensin system (RAS) [24,

105]. Inhibition of many of these pathways can show

protection against multiple or specific microvascular

complications in diabetic models, including retinopa-

thy. While discussion of these important pathways is

beyond the scope of this review, it is important to

stress that these mechanisms should not necessarily

be viewed as independent phenomena. Indeed, a re-

cent unifying concept has been proposed whereby hy-

perglycemia increases superoxide production (via the

mitochondrial electron transport chain) which in turn

initiates accelerated AGE formation and also exacer-

bates many of the aforementioned pathogenic path-

ways [56]. Indeed, studies using the transketolase ac-

tivator benfotiamine can inhibit a common conver-

gent pathway and effectively prevent retinopathy in

diabetic animals [28].

AGE formation in the body

Cell or tissue exposure to uncontrolled glucose con-

centrations can be inherently damaging to cells. In-

deed, bouts of hyperglycemia, as occurs in diabetes

mellitus, can lead to a range of pathogenic events that

cause cell damage and, ultimately, organ dysfunction.

Excess glucose in mammalian cell systems or im-

paired glucose handling leads to enhanced non-

enzymatic glycation reactions between reducing sug-

ars and the free amino groups on proteins, lipids and

DNA. This reaction is an inevitable consequence of

the reactivity of aldehydes with primary amino groups

and as a consequence nearly all body proteins carry

some “burden” of chemically attached carbohydrate.

The reaction begins with the formation of a Schiff

base between glucose and the e-amino group of lysine

that slowly rearranges to relatively stable Amadori

adducts (Fig. 2). Both the Schiff base and the Ama-

dori compound can undergo further oxidation and de-

hydration so that their concentrations ultimately de-

pend on both forward and reverse reactions. The for-

ward reactions give rise to additional protein-bound

compounds collectively termed AGEs. These adducts

are irreversible and their rate of accumulation in a tis-

sue depends on a number of factors including avail-

ability of metal ions and changes in oxidative stress,

generally thought to increase in conditions such as

ageing and diabetes. AGEs increase the chemical

modification, cross-linking, pigmentation and fluores-

cence of proteins, and their origin from an array of

precursor molecules contributes to the heterogeneity

of AGE structures [92].

AGEs can form directly from reaction of glucose

with amino groups but it has become increasingly ap-

preciated that this sugar is much less reactive than

�-oxaloaldehydes such as glyoxal, (GO), meth-

ylglyoxal (MGO) and 3-deoxyglucosone (3-DG). The

concentrations of these dicarbonyl compounds are in-

creased in plasma during hyperglycemia [57] and

arise from both chemical and metabolic pathways [43,

91, 92]. Dicarbonyls are an important source of intra-

and extracellular AGEs and, because they are highly

reactive they can lead to rapid adduct formation [91].
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Dicarbonyls can react directly with protein to yield

many of the same structures derived from the Ama-

dori product. For example, fructose-lysine can un-

dergo metal-catalysed oxidative cleavage giving rise

to the irreversible “glycoxidation” product, N� -(car-

boxy-methyl)lysine (CML). However, CML can also

be formed from direct reaction of GO with lysine, in-

dependent of the presence of glucose; GO also reacts

with arginine residues on protein to form carboxy-

methyl-arginine (CMA) [25]. Similarly, MGO can be

formed on oxidation of the Schiff base and on reac-

tion with protein to give rise to the AGEs N� -(car-

boxyethyl)lysine (CEL) and arginine-hydroimidazolone

[91, 92]. Further, MGO can arise by spontaneous

�-elimination of phosphate from triose phosphates,

the concentrations of which are increased during hy-

perglycemia because of the increased flux of glucose

through glycolysis. Lipid peroxidation reactions can

also form a class of Maillard products called ad-

vanced lipoxidation endproducts (ALEs) [60] (Fig. 2).

Indeed, lipids are important sources of chemical

modifications of proteins especially in lipid rich,

highly oxidative environments, such as in the retina,

and dyslipidemia may be an important pathogenic

force in retinopathies.

Beyond non-enzymatic glycation, it is now appre-

ciated that auto-oxidation of free sugars, superoxide

production and metabolism of glucose can lead to

high levels of reactive dicarbonyls such as MGO, GO,

and 3-DG. These dicarbonyls can lead to very rapid

AGE formation especially in circumstances of en-

hanced glycolytic activity (such as in hyperglycemia)

[92], although the net importance of AGEs such as

imidazolones are not fully understood. Under normal

circumstances the cell can protect itself against these

dicarbonyls through a range of intracellular detoxify-

ing enzymes which serve to limit adduct formation of

important structural and functional proteins. Altera-

tions in these enzymes during disease may have im-

plications for AGE accumulation and pathogenic ef-

fects in cells and tissues [52, 89, 90] Indeed, it has

been demonstrated that up-regulation of glyoxalase-1

can reverse high-glucose mediated AGE formation

over a short, 10-day period and prevent AGE-

mediated cell abnormalities [75].

Since the products of advanced glycation/lipoxida-

tion reactions are constantly forming under physio-

logical conditions it has been suggested that complex

receptor systems may have evolved to remove senes-

cent, glycation-modified molecules and/or degrade

existing AGE/ALE-crosslinks from tissues thereby
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Fig. 2. Scheme showing sources of reactive carbonyl intermediates in the formation of AGE/ALEs. Carbohydrates (aldoses, ketoses, ascor-
bate) react with protein amino groups, illustrated here for the reaction of glucose with lysine residues in protein (~), to first form the unfavored
Schiff base, followed by an Amadori rearrangement, to a stable ketoamine adduct, shown as fructose-lysine. ROS and RNS, reactive oxygen
and nitrogen species, oxidize both free and protein-bound carbohydrates producing a variety of dicarbonyl compounds (glyoxal, meth-
ylglyoxal, glucosone and 3-deoxyglucosone) that react with lysine and arginine residues on protein to form AGE/ALEs. Oxidation of amino ac-
ids and polyunsaturated fatty acid also give rise to many of the same reactive dicarbonyl compounds. However, some reactive dicarbonyl inter-
mediates arise from non-oxidative rearrangements of sugars or from spontaneous decomposition of products of glycolysis and the polyolpathway



limiting their deleterious effects. Such receptors could

play a critical role in AGE-related biology and the pa-

thology associated with diabetes and aging disorders

[67, 72, 100]. Several AGE-binding molecules have

been described and it is thought that many of the ad-

verse effects caused by advanced glycation are medi-

ated via AGE-receptors such as the receptor for AGEs

(RAGE) [71], AGE-R1 [45, 82], galectin-3 [64],

CD36 [58] and the type I and II scavenger receptor

[31]. The relative pathogenic contribution of these recep-

tors in instigating diabetic complications is poorly de-

fined, although RAGE is by far the best characterised.

Mechanistic in vitro and in vivo studies on RAGE and its

regulatory fragments such as soluble RAGE (sRAGE) in-

dicate an important role in pathobiology [7, 32].

Pathogenic role of AGEs in diabetic

retinopathy

Over the last twenty years it has become evident that

AGE-modification represents a major pathogenic fac-

tor in ageing and a spectrum of human diseases such

as diabetic complications [84, 101], neurodegenera-

tion (including Alzheimer’s disease) [54], ischemic

heart disease and atherosclerosis [78, 81]. The mam-

malian eye is configured to optimise transmittance of

light photons to the neural retina and it is important to

maintain structural integrity, optical clarity and nour-

ishment for the highly specialised cells of the eye. For

example, an opaque lens will prevent light penetration
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SERUM AGEs

INTRACELLULAR AGEs

Fig. 3. AGE-exposure to retinal vascular cells. Vascular endothelial cells and pericytes in the retinal capillaries would be expected to encounter
AGEs immobilised on the sub-cellular matrix where they may influence cell attachment through disruption of integrin – BM protein interactions.
Failure to receive appropriate survival cues from the BM can precipitate death in sedentary cells. Serum-derived AGEs may also interact with
vascular endothelium via AGE-receptors that are on the apical (and basal) plasma membrane. Serum-derived AGEs may be passed to peri-
cytes via the endothelium or as a result of blood retinal barrier dysfunction. These serum AGEs may also interact directly with cell surface glyco-
proteins with potentially damaging effects on membrane integrity and function. Hyperglycaemia can lead to rapid AGE formation through reac-
tion of cytoplasmic molecules with glycolytic intermediates and dicarbonyls or through complex interplay with superoxide radicals released
from the mitochondria. Such “cytoplasmic” AGEs can lead to many dysfunctional responses by vascular endothelium and retinal pericytes



to the retina and reduce visual acuity. Unfortunately,

many of the post-mitotic, differentiated cells of the

eye have little or no regenerative capacity. This makes

these cell structures highly susceptible to aging pro-

cesses and systemic diseases which accelerate AGE-

modification of macromolecules and alter structural

proteins. Indeed, ophthalmologists and vision scien-

tists have long recognised that the eye is profoundly

influenced by diseases such as diabetes and age-

related dysfunction which, together, account for the

leading causes of visual impairment world-wide. It is

anticipated that AGEs form in the extracellular space

as well as within the cytoplasmic compartment of reti-

nal cells. In particular sedentary cells resting in direct

contact with extracellular matrix and/or basement

membranes will encounter AGE crosslinks that have

accumulated within these long-lived proteins (Fig. 3).

AGE quantification and associations with

retinopathy

Such is the heterogenicity of AGE chemical adducts

and the diversity of macromolecules that are modified

by these adducts, the methods for AGE quantification

remain variable and somewhat controversial, accord-

ing to the basis of analytical and/or immunocyto-

chemical analysis. With this proviso, clinical studies

have demonstrated that the levels of AGEs in serum

[18, 59, 103], skin [73] or cornea [68] correlate with

the onset or grade of diabetic retinopathy. AGEs are

significantly elevated in diabetic pre-pubescent chil-

dren and adolescents who have background or pre-

proliferative retinopathy compared to counterparts

who are free from clinical signs of the disease [11].

While many of the reported studies measured a range

of ill-defined AGE moieties, others evaluated defined

adducts such as CML, pentosidine or crossline [88,

109] in association with diabetic retinopathy. At the

same time, some studies have reported no correlation

between AGE levels and retinopathy in diabetic pa-

tients [88, 103], although the apparent disparity with

other studies may be related to variations in patient

populations and/or the non-uniform assays for plasma

AGE-quantification.

As demonstrated in other microvascular beds,

AGEs and/or late Amadori products have been local-

ised to retinal vessels and neuroglia of diabetic pa-

tients [21, 26, 27, 55, 69, 85] where they would be ex-

pected to have a range of deleterious effects on cell

function. In vivo and in vitro studies suggest that ele-

vated AGE level occurring in diabetes may be an im-

portant factor the initiation and progression of retino-

pathy (Fig. 4), where immunoreactivity is associated

with lesions such as basement membrane (BM) thick-

ening. Retinal pericytes accumulate AGEs during ex-

perimental diabetes in animal models [85] which

would be expected to have a detrimental influence on

cell function and survival, especially since these cells

have a much lower replicative capacity when com-

pared to retinal microvascular endothelium [74]. In-

deed, studies have shown dysfunctional effects on

retinal pericytes, such as impaired phospholipid hy-

drolysis and phospholipid enzyme inhibition [6] or

modification of the antioxidant enzymes catalase and

superoxide dismutase [61].

In vitro responses of retinal cells to AGE expo-

sure

AGEs are toxic to retinal pericytes [12, 35, 66], a re-

sponse that is mediated by AGE-receptor activation

[12]. Indeed, recent evidence also suggests that these

adducts can induce osteoblastic differentiation and

calcification in pericytes [108] and a potent apoptotic

death response [107]. In vivo, retinal pericytes are sur-

rounded by vascular BM and lie outside the blood
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Fig. 4. Vascular BM thickening and AGE-immunoreactivity in diabetic
rat retina. Trypsin digests from non-diabetic rat retina (A&B), 12
month diabetic retina (C&D) were evaluated for AGE- immunoreactiv-
ity and BM thickening. The retinal microvasculature of 12 month old
non-diabetic rats shows some AGE-immunoreactivity which is largely
localised to the vascular wall, as indicated by diffuse fluorescence
(A). By contrast 12 month diabetic rat retinal vessels show intense
AGE-immunoreactivity, localised particularly in the retinal arteries
and arterioles (arrows) (C). Within the capillary bed the vessel walls
and the cell bodies of the retinal pericytes show high levels of AGEs
when compared to controls. The BM of the diabetic capillaries are
significantly thicker than non-diabetic counterparts (compare C with
D); arrows show BM



retinal barrier. Our own group has developed an in vi-

tro system whereby pericytes are grown on

a diabetic-like AGE-modified BM. Short-term expo-

sure to these “AGE-substrates” causes subtle physio-

logical alterations to pericytes consistent with those

seen in the diabetic retina. In diabetes the retinal

blood vessels become resistant to the actions of the

vasoconstrictive peptide endothelin-1 (ET-1), and this

is thought to directly contribute to the abnormal reti-

nal haemodynamics observed [10, 15]. Likewise,

when retinal pericytes are propagated on AGE-

modified BM they exhibit impaired calcium signal-

ling and contractile responses to ET-1 [33]. In diabe-

tes, the most probable explanation for the attenuated

ET-1 responses is a reduction in the number of func-

tional ETA receptors [15]. While ETA gene transcrip-

tion is unaffected in retinal pericytes by AGE modifi-

cation of basement membrane, ETA receptor protein

expression is reduced [33]. This implies that AGE-

modification of BM may profoundly influence mRNA

translation and/or post-translational degradative path-

ways in retinal pericytes. Recent unpublished data

from our laboratory also suggests that AGE-modified

BM leads to a marked deterioration in the functioning

of the contractile apparatus in retinal pericytes (Fig.

5). It has been previously demonstrated that attach-

ment-dependent cells grown on AGE-modified matri-

ces exhibit a marked alteration in the organization of

their actin cytoskeleton [30], a response that could ac-

count for the impaired pericyte contraction observed

in our experiments. In light of the findings above, it

may be surmised that during diabetes, accumulation

of AGEs in the BMs of retinal pericytes could com-

promise their ability to appropriately modulate retinal

capillary blood flow in response to a range of locally

derived vasoactive agents. This is significant since

retinal haemodynamic abnormalities are a pathologi-

cal hallmark signifying the onset of diabetic retinopa-

thy and these changes appear to coincide with the ac-

cumulation of AGEs in the extracellular domains of

the retinal capillaries [70, 85]. Long-term exposure of

retinal pericytes to AGE-BM also causes apoptotic

death, a response that can be prevented by immobilising

platelet-derived growth factor-BB (PDGF-BB) on the

matrix [83] (Fig. 6).

In vivo responses of retina to AGE-exposure

Exposure of retinal cells to pre-formed AGEs in vivo

are known to cause significant up-regulation of vascu-
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Fig. 5. Functional integrity of pericytes is altered by AGE-exposure. The functional integrity of the contractile machinery in retinal pericytes cul-
tured on native BM (Matrigel) and AGE-modified BM. A,B Photomicrographs showing a bovine retinal pericyte grown on native BM prior to (A)
and following (B) 5 minutes permeabilisation to Ca

��
with 1 µM Ca

��
Hanks solution (Ca

��
clamped with EGTA) containing ionomycin (1 µM).

(C,D) Light micrographs showing a retinal pericyte cultured on AGE-BM before (C) and after (D) permeabilisation to Ca
��

. (E). Quantification
using image analysis (2-dimensional surface area) confirmed that pericytes cultured on AGE-BM exhibited a reduced ability to contract. Val-
ues above the histograms indicate the number of pericytes tested per treatment group; ** p < 0.01 (unpaired t-test on arcsine transformed data)



lar endothelial growth factor (VEGF) [48, 77, 95,

107]. In addition to its importance in neovascularisa-

tion during proliferative diabetic retinopathy, VEGF

is also a potent vasopermeability factor in the retinal

microvasculature, with a role in inner blood retinal

barrier (iBRB) dysfunction [3]. Excessive vasoperme-

ability is a pathophysiological hallmark of diabetic re-

tinopathy and there is evidence to suggest that AGEs

could play a role in compromising of the capillary

unit leading to subtle and overt breakdown of the

iBRB. Loss of iBRB integrity is observed in non-

diabetic rats infused with AGE-modified proteins [77]

with a concomitant increase in intracellular adhesion

molecule-1 (ICAM-1) [53]. Indeed, it is recognised

that pro-inflammatory pathways may be active during

diabetic retinopathy, manifested by increased levels of

adhesion molecules such as ICAM-1 on the surface of

retinal microvascular endothelial cells. In combina-

tion with an enhanced stickiness and reduced deform-

ability of blood-borne leukocytes in the diabetic state,

this can lead to a marked leukocyte adhesion to endo-

thelium that precipitates capillary occlusion and vas-

cular cell death [51]. AGEs are a possible pathogenic

factor in pro-inflammatory responses and they can en-

hance ICAM-1 expression in macrovessels [42] and

have now been shown to evoke similar responses in

the retinal microvascular endothelium both in vitro

and in vivo [49, 53].

We have also recently demonstrated that AGE-

albumin can impair angiogenic potential in retinal

microvascular endothelial cells – an effect that is rep-

licated in an in vivo model of retinal neovascularisa-

tion (Fig. 7). This has important implications for

vasodegeneration during diabetic retinopathy and

suggests that these adducts could play a hitherto un-

recognised role in lack of vascular repair in the retinal

microvasculature during diabetes [86].

Prevention of AGE formation in animal models

Inhibition of AGEs has exciting possibilities for pre-

venting retinal pathology during diabetes. To date,

there have been many approaches to either prevent

AGE-formation, reduce AGE receptor – ligand inter-

actions/signalling pathways effects or break estab-

lished AGE crosslinks. These treatments not only of-

fer an important insight into the pathogenic role of AGEs

in diabetic retinopathy but may have clear applicability to

the treatment of patients with other ocular diseases.

Amadori product formation is an important basis of

Maillard chemistry in biological systems because pro-

gression to crosslink pathology requires chemical re-
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hyperoxia-induced retinopathy model results in retinal ischemia (*) at
post-natal day 20 which drives a neovascular response depicted by
hyperfluorescent pre-retinal fronds (arrow). When mice are infused
with AGE-modified Mouse serum albumin (AGE-MSA) between
P12-P20 the retinal microvasculature shows more ischemia but less
neovascularisation (arrow) when compared to native MSA controls.
Data are presented as mean values (± SD). (*** p < 0.001 compari-
sons between AGE-MSA and native-MSA treatments)



arrangement to create reactive intermediates before

the formation of irreversible AGEs. An important

pharmacological strategy for the inhibition of this

process has utilised the small nucleophilic hydrazine

compound aminoguanidine (Pimagedine) [9]. This

drug is a potent inhibitor of AGE-mediated crosslink-

ing and has been shown to prevent a range of diabetic

vascular complications in experimental animals (re-

viewed by Vasan et al. [98]), including diabetic re-

tinopathy [1, 21, 29, 37, 38]. Aminoguanidine has

been evaluated in a multi-centre clinical trial where it

failed to achieve statistically significant lowering of

serum creatinine, urinary albumin but showed posi-

tive signs towards slowing the progression of overt

nephropathy and retinopathy progression [8].

Another anti-AGE strategy is to attack AGE

crosslinks formed in biological systems. This consti-

tutes an exciting approach since it would “break”

pre-accumulated AGEs and subsequently allow their

clearance via the kidney. An AGE crosslink “breaker”

prototype has been described to attack dicarbonyl-

derived crosslinks in vitro [99] and there are now at

least two such (related) chemical agents with the abil-

ity to reduce tissue AGEs in experimental diabetes

[13, 106]. The “breaker” ALT-711, has been shown to

ameliorate myocardial stiffness in aged dogs [5] and

improved the ability of the carotid artery to expand

during systole in diabetic rats [106]. In preliminary

clinical trials, ALT-711 modestly improved arterial

compliance in aged patients with measurable cardio-

vascular stiffening [98]. The effects of ALT-711 on re-

tinopathy have yet to be evaluated.

Another successful approach has been to screen for

compounds with post-Amadori product scavenging

potential, since this is an important route for AGE for-

mation in vivo. So-called “Amadorins” have an ability

to scavenge reactive carbonyls and therefore inhibit

the conversion of Amadori intermediates to AGEs

and also ALEs [39, 60]. Aminoguanidine possesses

no scavenging properties [39, 102], but it has been

found that the derivative of vitamin B6, pyridoxamine

(Pyridorin) is an efficacious and specific post-

Amadori inhibitor [60, 63, 102], with the ability to

prevent renal dysfunction in diabetic rats [17]. Also in

diabetic rats, pyridoxamine successfully reduced reti-

nal AGE accumulation and also prevented up-

regulation of BM-associated genes and diabetes-

associated capillary acellularity [79].

Conclusion

AGEs play an important pathogenic role in diabetic

retinopathy although it should be appreciated that the

onset and progression of retinopathy probably in-

volves a complex interplay between a range of patho-

genic mechanisms. This is a reflection of the multi-

factorial nature of metabolic upset within the diabetic

milieu. Long-term management of retinopathy in the

ever-growing number of diabetic patients will involve

precise regulation of their hyperglycemia and lipi-

demic profile hopefully in combination with drugs

that ameliorate an array of biochemical and metabolic

abnormalities. Experience shows that some inhibitors

will probably be of more benefit to some complica-

tions over others, and indeed, clinical trials are often

more difficult and costly between, for example, dia-

betic retinopathy and nephropathy. Experimental

work suggests that inhibition of AGE-mediated path-

ways present a valid avenue for therapeutic exploita-

tion in diabetic retinopathy and as the chemical reac-

tions and structure of AGE moieties become further

understood within in vitro and, ultimately, in vivo sys-

tems it will enable targeting of therapeutic agents to

prevent AGE-mediated effects especially associated

with lesions in the diabetic retina. An effective

drug(s) to prevent the pathogenic effects of AGEs

may be become a vital component of the ophthal-

mologist’ future therapeutic armoury to prevent onset

and progression of diabetic retinopathy.
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