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a b s t r a c t

Non-enzymatic modification of proteins by reducing sugars leads to the formation of advanced glycation
end products (AGEs), whose process has been reported to progress under physiological aging, oxidative
stress or diabetic conditions. There is a growing body of evidence that AGEs and their receptor (RAGE)
axis is involved in the pathogenesis of cardiovascular disease (CVD). Indeed, engagement of RAGE with
AGEs is shown to elicit oxidative stress generation and subsequently evoke inflammatory and thrombo-
genic responses in various types of cells, including endothelial cells, smooth muscle cells, macrophages
and renal cells, thus playing an important role in the development and progression of vascular injury
in both diabetes and non-diabetes. These observations suggest that the inhibition of AGE formation,
down-regulation of RAGE expression or blockade of the RAGE downstream signaling may be a promising
RAGE
therapeutic target for preventing CVD. Recently, peroxisome proliferator-activated receptor-� (PPAR�) is

involved in not only adipocyte differentiation, but also vascular homeostasis. Therefore, in this study, we
review effects of PPAR� agonists on the AGE–RAGE system and their implication in CVD.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Reactive derivatives from non-enzymatic glucose–protein con-
densation reactions, as well as lipids and nucleic acids exposed
to reducing sugars, form a heterogeneous group of irreversible
adducts called “advanced glycation end products (AGEs)” [1,2].
Since the formation and accumulation of AGEs are dependent on
the turnover rate of the chemically modified target, the time avail-

able, and the sugar concentration, its process has been reported to
progress under physiological aging or diabetes [3–6]. Under hyper-
glycemic, oxidative stress or inflammatory conditions, this process
begins with the conversion of reversible Schiff base adducts to
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more stable, covalently bound Amadori rearrangement products
[3–6]. Over the course of days to weeks, these Amadori products
undergo further rearrangement reactions to form the irreversibly
bound moieties known as AGEs such as pentosidine, pyrraline and
imidazolone [3–8]. Recent studies have shown that AGEs and their
receptor (RAGE) axis is implicated in the pathogenesis of various
devastating disorders such as diabetic vascular complications, car-
diovascular disease (CVD), Alzheimer’s disease, cancer growth and
metastasis, insulin resistance and nonalcoholic fatty liver disease
[9–17]. Indeed, engagement of RAGE with AGEs is reported to elicit
oxidative stress generation and subsequently evoke inflammatory
and thrombogenic responses in various types of cells, including

endothelial cells, smooth muscle cells, macrophages and renal cells,
thus playing an important role in the development and progres-
sion of these devastating disorders. RAGE is a member of the
immunoglobulin superfamily of cell surface molecules capable of
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nteracting with a broad spectum of ligands including a diverse
roup of reducing sugar complexes with proteins, lipids and nucleic
cids [9,10]. V-domain of RAGE is supposed to interact with AGEs
18]. These observations suggest that the inhibition of AGE forma-
ion or AGE–RAGE interaction, down-regulation of RAGE expression
r blockade of the RAGE downstream signaling may be a promising
herapeutic target for preventing various life-threatening disorders
uch as CVD.

Peroxisome proliferator-activated receptor-� (PPAR�) is a
uclear receptor protein [19–21]. It functions as a master tran-
criptional factor that promotes differentiation of preadipocytes
y activating adipose-specific gene expression [19–21]. Recently,
PAR� activity has been shown to influence the gene expression
nvolved in carbohydrate and lipid metabolism [19–21]. Indeed,
ioglitazone and rosiglitazone, ligands for PPAR�, improve insulin
esistance in diabetic patients, and now become one of the most
opular anti-diabetic drugs in the developed countries [19–21].
oreover, there is accumulating data that activators of PPAR� exert

nti-inflammatory, anti-oxidative and anti-proliferative effects on
ascular wall cells [22–25]. These observations suggest that PPAR�
gonists may have atheroprotective properties in vivo through its
leiotropic effects. However, as far as we know, there is no com-
rehensive review about the regulation by PPAR� agonists of the
GE–RAGE system. Therefore, in this study, we review the effects
f PPAR� agonists on the AGE–RAGE system both in vitro and in vivo
nd their clinical implication in CVD.

. Involvement of AGE–RAGE system in CVD

A variety of molecular mechanisms by which AGE–RAGE sys-
em contributes to the development and progression of CVD
ave been proposed [1,7–11,14]. AGEs formed on the extracellular
atrix results in decreased elasticity of vasculatures, and quench

itric oxide (NO), which could mediate defective endothelium-
ependent vasodilatation [26]. The AGE–RAGE-elicited oxidative
tress inactivates NO to form peroxynitrite, which could further
nduce endothelial cell (EC) damage and platelet activation. AGE

odification of low-density lipoprotein (LDL) exhibits impaired
lasma clearance and contributes to increased LDL levels in vivo,
hus being involved in atherosclerosis [27]. In addition, bind-
ng of AGEs to RAGE results in the generation of intracellular
eactive oxygen species (ROS) generation and subsequent activa-
ion of the redox-sensitive transcription factor nuclear factor-�B
NF-�B) in vascular wall cells, which promotes the expression
f a variety of atherosclerosis-related genes, including inter-
ellular adhesion molecule-1 (ICAM-1), vascular cell adhesion
olecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-

), plasminogen activator inhibitor-1 (PAI-1), tissue factor, vascular
ndothelial growth factor (VEGF), and RAGE [28–35]. Further,
GEs have the ability to induce osteoblastic differentiation of
icrovascular pericytes, which would contribute to the develop-
ent of vascular calcification in accelerated atherosclerosis as well

36].
Smooth muscle cell (SMC) proliferation, migration, and neoin-

imal expansion upon arterial injury were strikingly suppressed
n homozygous RAGE null mice compared with those observed
n wild-type littermates [37]. These data highlight key roles for
AGE in modulating SMC properties after injury and suggest that
AGE is a logical target for the suppression of untoward neointimal
xpansion consequent to arterial injury. In addition, administra-
ion of a recombinant soluble form of RAGE (sRAGE) consisting of

he extracellular ligand-binding domain, has been recently shown
o not only suppress the development of atherosclerosis but also to
tabilize established atherosclerosis in diabetic apolipoprotein E-
ull mice [38,39]. The interaction of the rennin–angiotensin system
RAS) and the AGE–RAGE system in the development of and pro-
l Research 60 (2009) 174–178 175

gression of CVD has also been proposed. The AGE–RAGE interaction
augments angiotensin II-induced SMC proliferation and activa-
tion, thus being involved in the progression of atherosclerosis as
well [40]. AGEs have been actually detected within atherosclerotic
lesions in both extra and intracellular locations [41]. Furthermore,
RAGE overexpression is associated with enhanced inflammatory
reaction and matrix metalloproteinase (MMP) expression in plaque
macrophages in diabetic patients [42]. Therefore, the AGE–RAGE
interaction could contribute to plaque destabilization by inducing
culprit MMP expression.

3. Involvement of AGE–RAGE system in chronic kidney
disease (CKD)

In recent years, there is a growing body of evidence that even
minor renal dysfunction is associated with high risks of cardiovas-
cular events [43,44]. Now CKD is generally thought to be one of the
risk factors for CVD [45].

The AGE–RAGE system is involved in the development and
progression of CKD as well [46]. AGE formation on extracellu-
lar matrix proteins alters both matrix–matrix and cell–matrix
interactions [46]. AGEs stimulate insulin-like growth factor-I, -
II, platelet-derived growth factor, VEGF and transforming growth
factor-� (TGF-�) in mesangial cells, which in turn mediate pro-
duction of type IV collagen, laminin and fibronectin [46,47]. AGEs
induce TGF-� overexpression in both podocytes and proximal
tubular cells as well [48]. Recently, RAGE-overexpressing diabetic
mice have been found to show progressive glomerulosclerosis
with renal dysfunction, compared with diabetic littermates lack-
ing the RAGE transgene [49]. Further, diabetic homozygous RAGE
null mice failed to develop significantly increased mesangial matrix
expansion or thickening of the glomerular basement membrane
[50]. Taken together, these findings suggest that the activation of
AGE–RAGE axis contributes to the expression of VEGF and enhanced
attraction/activation of inflammatory cells in the diabetic glomeru-
lus, thereby setting the stage for mesangial activation and TGF-�
production; processes which converge to cause albuminuria and
glomerulosclerosis.

We have recently found that the AGE–RAGE-mediated ROS gen-
eration activates TGF-�–Smad signaling and subsequently induces
mesangial cell hypertrophy and fibronectin synthesis by autocrine
production of angiotensin II [51]. This pathway may provide an
important link between the AGE–RAGE axis and the RAS in pro-
moting the development and progression of CKD.

4. Effects of PPAR� agonists on AGE formation

There are a couple of papers to show that PPAR� agonists could
inhibit the formation of AGEs [52,53]. Indeed, Sobal et al. reported
that the long-term glycation and glycoxidation of LDL as measured
by 5-hydroxymethyl-2-furaldehyde formation and binding of fruc-
tosamine, was inhibited by troglitazone [52]. The inhibitory effects
of PPAR� agonists on AGE formation may be ascribed to its anti-
oxidative properties [22–25]. However, the clinical relevance of
the AGE-lowering effects of PPAR� agonists is still unclear because
troglitazone inhibits the activities of glyoxalase-I and -II, enzymes
that detoxify methylglyoxal and other alpha-oxo-aldehydes, which
could result in the formation of AGEs [54].

5. Effects of PPAR� agonists on RAGE signaling pathways
Several papers have shown that PPAR� agonists block the
deleterious effects of AGEs both in cell culture and animal
model [55–65]. Activation of PPAR� by rosiglitazone inhibited
AGE-induced inducible NO synthase expression, nitrite release,
fibronectin and type IV collagen production by mesangial cells
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55,56]. Rosiglitazone attenuated the AGE-induced interleukin-8
nd soluble ICAM-1 generation by proximal tubular epithelial cells
s well through the suppression of signal transducer and activa-
or of transcription [57]. Further, rosiglitazone was reported to
nhibit renal extracellular matrix accumulation, fibronectin, type
V collagen and PAI-1 production and subsequently reduce pro-
einuria in AGE-injected rats [56]. Rosiglitazone also inhibited the
GE-induced proliferation, connective tissue growth factor (CTGF)
verexpression and reduced NO production in cardiac fibroblasts
58].

Suppression of RAGE expression may be a molecular target of
PAR� agonists [59–66]. Marx et al. reported that the stimula-
ion of human ECs with PPAR� agonists such as rosiglitazone and
ioglitazone decreased basal as well as tumor necrosis factor-alpha-

nduced RAGE expression via suppression of NF-�B activation. They
howed that PPAR� agonists decreased AGE- as well as �-amyloid-
nduced MCP-1 expression in ECs [59]. Wang et al. reported that
osiglitazone reduced RAGE expression and S100-induced SMC
roliferation in vitro and suppressed neointimal formation after
alloon angioplasty in both diabetic and non-diabetic rats [60].
urther, we have found that telmisartan, an angiotensin II type
receptor blocker (ARB), could down-regulate RAGE expression

nd suppress its downstream signalings in various cells through
ts unique PPAR�-modulating ability [61–65]. Indeed, telmisartan
uppressed RAGE expression at both mRNA and protein lev-
ls in human cultured ECs, which were prevented by GW9662,
n inhibitor of PPAR�. Telmisartan inhibited up-regulation of
RNA levels for MCP-1, ICAM-1, VEGF and PAI-1 in AGE-exposed

Cs [61,62]. In addition, telmisartan also down-regulated RAGE
RNA levels and subsequently inhibited superoxide generation

s well as MCP-1 expression in mesangial cells, all of which
ere prevented by GW9662 [63]. Since another ARB, candesartan,
id not suppress the AGE-induced ROS generation in mesangial
ells and that an anti-oxidant N-acetylcysteine inhibited MCP-

production by AGE-exposed mesangial cells, telmisartan may
nhibit the AGE-elicited MCP-1 expression in mesangial cells by
locking the RAGE-mediated superoxide generation via PPAR� acti-
ation. Moreover, we have recently found that telmisartan, but
ot candesartan, decreased the AGE-induced RAGE expression,
OS generation and subsequent C-reactive protein (CRP) expres-

ion in human hepatoma cells, Hep3B cells, all of which were
locked by GW9662 as well [64]. Telmisartan was also found to

mprove AGE-elicited insulin resistance in Hep3B cells by inhibit-
ng serine phosphorylation of insulin receptor substrate-1, at least

ig. 1. Protective role of PPAR� agonists in the AGE–RAGE system-involved car-
iovascular disorders. AGE–RAGE interaction induces oxidative stress generation in
arious types of cells, thus eliciting inflammation, endothelial dysfunction, throm-
osis and nephrosclerosis via overexpression of a variety of adhesion molecules,
ytokines and growth factors. PPAR� agonists not only inhibit the formation of
GEs, but also reduce RAGE expression, thereby playing a protective role against
he AGE–RAGE system-involved cardiovascular disorders.
l Research 60 (2009) 174–178

in part, via activation of PPAR� [65]. Grape seed proanthocyani-
din extracts also inhibited the AGE-induced VCAM-1 expression
in ECs by suppressing RAGE expression via PPAR� activation [66].
Taken together, these observations suggest that PPAR� agonists
reduce RAGE expression and subsequently block the downstream
signaling pathways, thus limiting the cells’ susceptibility toward
pro-inflammatory, pro-thrombogenic and insulin resistant effects
of AGEs.

We posit an overall scheme concerning the protective role of
PPAR� agonists in the AGE–RAGE system-involved cardiovascular
disorders (Fig. 1).

6. Perspective: potential utility of PPAR� agonists on the
AGE–RAGE-elicited cardiac dysfunction

Structural modification by AGEs of collagen in the arterial wall
or heart might play important roles in arterial or cardiac elasticity.
Indeed, aminoguanidine, an inhibitor of AGE formation, was shown
to increase vascular elasticity, improve left ventricular–arterial
coupling, and decrease vascular permeability in diabetic rats
[67]. Further, aminoguanidine prevented the decreased myocardial
compliance and cardiac hypertrophy in diabetic animals [68,69].
Diabetic homozygous RAGE null mice were protected from the
adverse impact of ischemia/reperfusion injury in the heart as well
[70]. In addition, treatment with ALT-711 (alagebrium), a cross-link
breaker of AGEs, restored left ventricular collagen solubility and
cardiac brain natriuretic peptide (BNP) in association with reduced
cardiac AGE levels and abrogated the increase in RAGE, connec-
tive tissue growth factor, and collagen III expression [71]. A recent
clinical trial has shown that patients who received ALT-711 expe-
rienced statistically significant reduction in arterial pulse pressure
and an increase in large artery compliance in aged humans com-
pared to patients who received placebo, thus suggesting that it may
provide a novel therapeutic approach for this abnormality, which
occurs with diabetes and isolated systolic hypertension [72]. Six-
teen weeks of treatment with ALT-711 was found to result in a
decrease in left ventricular mass and improvements in left ven-
tricular diastolic filling and quality of life in patients with diastolic
heart failure [73]. These observations suggest that AGE–RAGE sys-
tem plays a central role in many of the alterations observed in
the diabetic heart. Although there is no report to show the ben-
eficial effects of PPAR� agonists on the AGE–RAGE-elicited cardiac
dysfunction, the above-mentioned findings suggest the potential
utility of PPAR� agonists in AGE–RAGE system-associated cardiac
abnormalities. However, we should briefly discuss the adverse
effects of PPAR� agonists on cardiovascular system. A recent meta-
analysis of 42 clinical trials suggest that rosiglitazone is associated
with the increased risk for myocardial infarction and death from
CVD in diabetic patients, although there is still controversy about
the findings [74]. Further, treatment with rosiglitazone or piogli-
tazone is reported to increase the risk for weight gain, peripheral
edema and heart failure [75].

7. Conclusions

We reviewed here the pathological role of the AGE–RAGE sys-
tem in cardiovascular and renal diseases in diabetes. The inhibition
of the AGE–RAGE system by PPAR� agonists may be a promising

therapeutic approach for CVD in human diabetes. However, unfor-
tunately, there is no drug in the pipeline against the potential targets
identified in this review. The development of the selective PPAR�
modulator (SPPARM) without undesirable side effects [76] may be
needed for the treatment of CVD in diabetes.
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