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® Chronic renal transplant dysfunction is one of the leading causes of graft failure in kidney transplantation. A
complex interplay of both alloantigen-related and alloantigen-unrelated risk factors is believed to underlie its
development. We propose that advanced glycation end products (AGEs) are involved in the development of chronic
renal transplant dysfunction. AGE formation is associated with different alloantigen-unrelated risk factors for
chronic renal transplant dysfunction, such as recipient age, diabetes, proteinuria, hypertension, and hyperlipid-
emia. In vitro studies have shown that AGEs induce the expression of various mediators associated with chronic
renal transplant dysfunction. Furthermore, AGE-induced renal damage has been found in multiple experimental
studies. This renal damage shows similarity to the damage found in chronic renal transplant dysfunction. Together,
several lines of evidence support a role of AGEs in the development of chronic renal transplant dysfunction and
suggest that preventive therapy with AGE inhibitors may be helpful in preserving renal function in transplant

recipients. Am J Kidney Dis 43:966-975.
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HE DEVELOPMENT of new immunosup-
pressive drugs has improved short-term
graft survival in kidney transplant recipients sub-
stantially.>2 Although overall long-term graft sur-
vival is improving sdowly, it does not parallel
improvements in short-term survival .2 Approxi-
mately 60% of patients receiving cadaveric do-
nor kidneys will develop graft failure within 10
years after transplantation.!

Chronic rena transplant dysfunction, also
known as chronic allograft nephropathy, is one
of theleading causes of late graft failure. Chronic
renal transplant dysfunction is characterized clini-
cally by aslow, but steady, decline in function of
the transplanted kidney, associated with the devel -
opment of hypertension and proteinuria.® His-
topathol ogic characteristics of chronic renal trans-
plant dysfunction include arteriosclerosis of the
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intrarenal vasculature, glomerulosclerosis, and
interstitial fibrosis with tubular atrophy.* A com-
plex interplay of both alloantigen-dependent and
alloantigen-independent risk factors is believed
to underlie the development of chronic rend
transplant dysfunction.® Alloantigen-dependent
factors include episodes of acute rejection, inad-
equate immunosuppression, and increased HLA
mismatching.® Alloantigen-independent factors
include recipient and donor age,® impaired renal
function,® hypertension,” the presence of diabe-
tes® proteinuria,® hyperlipidemia,© obesity,1
transplant ischemia,? and use of calcineurin in-
hibitors.® The extent of their contributions is
largely unknown.

Interestingly, to a certain extent, alloantigen-
independent risk factors for the development of
chronic renal transplant dysfunction overlap risk
factors for the accumulation of advanced glyca-
tion end products (AGES). This overlap is well
established for age,* rena function impair-
ment, 516 and diabetes.!” Although less conclu-
sive, evidence exists that associates hyperten-
sion, 1819 proteinuria, 2 and hyperlipidemia? with
enhanced AGE accumulation. This led us to
believe that AGEs might be involved in the
pathogenesis state of chronic renal transplant
dysfunction. In this report, we summarize the
evidence for arole of AGEs in the development
of chronic rena transplant dysfunction. First, we
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discuss recent insights in AGE kinetics. Second,
we discuss data on plasma and tissue AGE levels
in patients with a kidney transplant. Third, we
propose mechanisms through which AGEs may
be involved in the development of chronic renal
transplant dysfunction. Finally, we discuss stud-
ies on AGE-induced renal tissue damage.

AGE KINETICS

Historically, AGEs have been considered end
products from nonenzymatic reactions between
sugars and proteins, caled the Maillard reac-
tion.?2 Thefinal stepsin the Maillard reaction are
driven by oxidative stress, defined as the steady-
state level of reactive oxygen species.?® Because
AGEs are able to accelerate oxidation strongly,
they favor their own production.2®2* Figure 1
shows classical and newly discovered pathways
of AGE formation. Currently, it is known that

some AGEs are derived from lipid peroxidation;
therefore, advanced lipoxidation end products
would be a better name for this subgroup of
AGEs. However, we use the term AGEs when
referring to both AGEs and advanced lipoxida-
tion end products. Furthermore, it was discov-
ered that in addition to oxidative stress, carbonyl
stress, ie, the steady-state level of reactive car-
bonyl compounds, is thought to be centrally
involved in AGE formation.?>%6 Reactive car-
bonyl compounds are derived from the reaction
of lipids or carbohydrates with reactive oxygen
species. These compounds subsequently react
with proteinsto form AGEs and advanced lipoxi-
dation end products. Examples of reactive car-
bonyl compounds include methylglyoxa and
glyoxal 526

The formation and accumulation of AGES in
tissue, the amount of AGEs circulating in the
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bloodstream, and the excretion of AGEs by the
kidney seem to bein dynamic equilibrium. AGEs
form cross-links with long-living tissue proteins,
which enable them to accumulate in the body.?”
AGE accumulation in tissue is associated with
aging,’ renal function impairment,?® and the
presence of diabetes.t” External sources of AGES
include AGE precursors in cigarette smoke and
alimentary intake of AGESs.2%30 Detoxification of
AGESs depends on both the degradation of AGES
to AGE peptides by macrophages®® and renal
clearance of AGEs. There is evidence for filtra-
tion of AGE compounds through glomeruli and
active reabsorption in proximal tubuli. After
modification or degradation in proximal tubuli,
AGEs eventually are cleared in urine.3233

Although severa methods to determine AGE
accumulation have been described, no commer-
cial assay or tool is available yet. Classically,
AGESs are determined by using their characteris-
tic fluorescence properties.®* Currently, gas chro-
matography mass spectrometry is considered the
most accurate technique to determine AGE lev-
€ls.3 High-performance liquid chromatography
also is accurate, but is relatively time consum-
ing.%® Several difficulties exist with standardiza-
tion if an enzyme-linked immunosorbent assay is
used.?” Furthermore, fluorescent techniques have
been adapted to enable their usein clinical stud-
ies.38 |n addition to biochemical assays and fluo-
rescent techniques, several immunohistochemi-
cal techniques have been described to determine
AGE levels.® One should consider differencesin
accuracy of the techniques used when interpret-
ing dataon AGE levels.

AGE LEVELS IN KIDNEY TRANSPLANT
RECIPIENTS

Before exploring AGE accumulation in kid-
ney transplant recipients, it is important to real-
ize that most transplant recipients have experi-
enced a long period of impaired renal function
before transplantation. AGEs accumulate during
the period of gradua renal function loss and
during dialysis treatment.?® Thus, kidney trans-
plant recipients most often have high AGE levels
before transplantation. AGE levels in transplant
donorsare unknown. Presumably, awide variabil-
ity in donor kidney AGE levels exists because of
the heterogeneity of donors. However, it is rea-
sonable to assume that donors will have lower
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tissue AGE level sthan transplant recipients. Thus,
a kidney with presumably low AGE levels is
transplanted into an AGE-rich environment. Kid-
ney transplantation aimsto restore renal function
and thereby is thought to lower AGE levels.
Questions are to what extent AGE accumulation
will resolve after kidney transplantation and how
the transplanted kidney behaves in an AGE-rich
environment. Severa research groups haveinves-
tigated the influence of kidney transplantation on
AGE levels in tissue and blood. Unfortunately,
only data on extrarenal AGE levels have been
published. No data are available on AGE levels
in kidneys of transplant recipients, either with or
without chronic renal transplant dysfunction.
Thus, we do not know how the transplanted
kidney handles the AGE-rich environment it is
placed in. Although it is interesting to hypoth-
esize that the transplanted kidney is more prone
to AGE formation because of local proinflamma-
tory stimuli, the current lack of data on rend
AGE levels limits us to expand on this thought.
The different studies on AGE levelsin pretrans-
plantation and posttransplantation patients are
listed in Table 1.

Blood AGE levels are increased strongly in
patients on dialysis therapy compared with con-
trols. Although transplantation reduces blood
AGE levels, these generally remain greater than
normal. Interestingly, studies evaluating blood
AGE levels within the first 6 months after trans-
plantation showed that blood AGE levels de-
creased by 70% to 80%. This suggests that a
decrease in blood AGE levels occurs early after
improvement of renal function.*%#! Someinvesti-
gatorsreported disproportionally high blood AGE
levels after transplantation when related to rend
function.*24® Thus, other factors not aready
present in patients with chronic rena insuffi-
ciency and unrelated to renal function may influ-
ence AGE formation after transplantation aswell.
One explanation could be that enhanced AGE
accumulation in relation to rena function reflects
an enhanced nutritional status.** Another expla-
nation could be the use of calcineurin inhibitors,
especially cyclosporine, in transplant recipients.
Use of cyclosporine has been associated with
enhanced oxidative stress and thus might be of
influence on AGE levels found in kidney trans-
plant recipients.*

Results of studies on the influence of kidney
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Table 1. Effect of Kidney Transplantation on AGE Levels in Tissue and Blood
Post-v
Study Design Pretransplantation* Posttransplantation* Pretransplantation
No. of Fold v No. of Fold v Reduction
Reference Endpoint  Method Type (duration) Patients Controls  Patients Time Controls (%) P Remarks
Data on blood AGEs
Makita et al,*° 1991 Se-AGE RRA HD (12 * 17 mo) 6 5.31 16 29y 1.56 71 <0.001 Diabetic
Se-AGE RRA D 2 4.62 2 14d 1.36 71 — Prospective
Hricik et al,’51993  PI-Pent HPLC D 41 275 39 24 mo 3.3 88 <0.05t1 Prospective
Hricik et al,*° 1996  PI-Pent HPLC HD + PD (16.3-38.1 88 21.2 15 6-80 mo 2.2 89 0.002 Prospective
mo)
Miyata et al,*1 1997 PI-Pent-Alb  HPLC HD (12.4 = 7.9y) 29 10.7 7 6mo 15 86 <0.05t  Prospective
Pl-Pent-Alb  HPLC HD (12.4 =7.9y) 29 10.7 12 6.2y 1.0 91 <0.05t
Sebekova et al,*? PI-Fluor Sp HD + PD (8-68 mo) 10 4.8 9 34mo 24 50 <0.01 Pediatric
2001
PI-CML ELISA HD + PD (8-68 mo) 10 3.3 9 34 mo 3.0 15 NS Pediatric
Misselwitz et al, 16 Se-Pent HPLC PD + HD 9 16.4 12 0.5-6y 2.4 85 <0.01 Pediatric
2002
Se-CML ELISA PD + HD 9 2.2 12 056y 1.0 53 <0.01 Pediatric
Data on tissue AGEs
Lee et al,*6 1995 Skin-Ti-CLF  Sp CRF 18 2.45 16 11 wk 1.26 49 0.003 Nondiabetic
Perit-Ti-CLF Sp CRF 13 1.89 15 11wk 1.20 37 NS Nondiabetic
Hricik etal,*91996  Skin-Ti-Pent HPLC HD + PD (16.3-38.1 88 59.7 £ 21.7 15 6-80 mo 57.9 = 17.3 3 NS Prospective
mo) pmol/mg# pmol/mgt
Yoshida et al 47 Card-Ti-CML IH HD + PD (5.8 + 1.6 y) 10 3.6 8 58y 22 39 <0.05
1998
Card-Ti-AGE IH HD + PD (5.8 = 1.6 y) 10 0.96 8 58y 0.55 43 NS
Shaw et al, #1998  Skin-Ti-CLF Sp CRF 26 11.7 = 451 18 3-43mo 5.0 =3.13 57 <0.00001 Nondiabetic
AU/mgt AU/mgt
Skin-Ti-Pent HPLC CRF 13 245477 9 3-43mo 65.9 =40 73 <0.001  Nondiabetic
pmol/mgt pmol/mgt

Abbreviations: Perit, peritoneal; Card, cardial; Se, serum; P, plasma; Ti, tissue; Pent, pentosidine; CML, carboxymethyllysine; Alb, albumine; Fluor, fluorescent
AGEs; CLF, collagen linked fluorescent; RRA, radio receptor assay; HPLC, high-performance liquid chromatography; Sp, spectrometry, ELISA, enzyme-linked
immunosorbent assay; IH, immunohistochemistry; HD, hemodialysis; PD, peritoneal dialysis; CRF, chronic renal failure; D, dialysis (non-specified); NS, not significant.

*AGE levels in patients were divided by AGE levels in healthy controls to calculate fold difference from control.

TAlthough differences were significant, significance levels were not given.

$No controls available, concentrations are given in picomoles per milligram or arbitrary units per milligram.

transplantation on AGE accumulation in tissue
are inconclusive. Although the idea that kidney
transplantation decreases tissue AGE accumula-
tion is supported by some studies,*6-*8 Hricik et
al*® showed that kidney transplantation does not
correct tissue AGE accumulation. They found an
increase in tissue AGE levels in the mgjority of
patients studied. Although there is reason to
believe that a decrease in blood AGE levels
eventually is reflected in a decrease in tissue
AGE accumulation, studies on tissue AGE levels
are limited in number, size, and duration after
transplantation (mostly <4 to 5 years).

Few data currently are available on the kinet-
ics of tissue AGE accumulation in the long run
after trangplantation. Recently, data were pub-
lished on extrarenal AGE levelsin patients who
developed chronic renal transplant dysfunc-
tion.%0 Patients with biopsy-proven chronic renal
transplant dysfunction had greater AGE levels
compared with transplant recipients with normal

renal function and patients with chronic renal
failure of their native kidneys. These findings
argue that the increased AGE levels in patients
with chronic renal transplant dysfunction cannot
be attributed solely to the effect of decreased
renal function in patients with chronic renal
transplant dysfunction.

AGE-INDUCED CELLULAR RESPONSES

We wonder whether AGEs are innocent by-
standers or contribute actively to the pathophysi-
ological processes underlying the development
of chronic rena transplant dysfunction. In Fig 2,
we propose a cascade of events that may be
involved. It refersto cell types that expressAGE
receptors, mediators released in response to acti-
vation of these receptors, and tissue damage that
resulted from those mediators in different in
vitro experiments. AGE receptor expression has
been found in a wide range of cells, such as
endothelia cells,>! monocytes,>2 macrophages,3!
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Fig 2. Effect of AGEs on different cell types involved in the development of chronic renal transplant dysfunction.
Abbreviations: CRTD, chronic renal transplant dysfunction; PAI-1, plasminogen activator inhibitor 1; VCAM-1,
vascular cell adhesion molecule 1; ICAM-1, intercellular adhesion molecule 1; IL-6, interleukin-6; NF-kB, nuclear
factor-kB; ECM, extracellular matrix; TGF-B, transforming growth factor-g; SMC, smooth muscle cell.

mesangia cells,>® smooth muscle cells>* and
tubular cells. The various cells rel ease different
mediators when stimulated by AGEs, inducing
an inflammatory response that may lead to tissue
damage.

Endothelial Cells

Endothelia cells are thought to be centrally
involved in the process of inflammation. Differ-
ent inflammatory mediators are released after
activation of receptors on endothelial cells. When
stimulated by AGES, endothelial cellsreleasethe
inflammatory mediators vascular cell adhesion
molecule-1 and intercellular adhesion molecule-
15156 Release of these inflammatory mediators
is influenced by oxidative stress and nuclear
factor-«B expression,>-%0 which are both en-
hanced by AGEs in vitro.#6 Oxidative stress is

enhanced in patients with end-stage rena fail-
ure®? and kidney transplant recipients.5® In addi-
tion, it was shown that transplant recipients with
chronic rejection experience significantly more
oxidative stress than patients without chronic
rejection.®® Inflammation also has been associ-
ated with chronic rejection. An immunohisto-
chemical study of transplant biopsy specimens
showed enhanced expression of intercellular ad-
hesion molecule-1 and vascular cell adhesion
molecule-1 in chronic rejection.’* In endothelia
cells, AGEs induce the production of tissue fac-
tor and plasminogen activator inhibitor-1, as
well 8566 Tissue factor is the major cellular trig-
ger of blood coagulation. Activated plasminogen
activator inhibitor-1 inhibits the activation of
plasminogen to plasmin, resulting in thrombo-
sis.%” In addition to their involvement in blood



AGEs AND CHRONIC RENAL TRANSPLANT DYSFUNCTION

coagulation, plasminogen activator inhibitor-1
and tissue factor are thought to have important
proinflammatory capabilities.586°

Monocytes and Macrophages

Monaocytes and macrophages are actively in-
volved in the inflammatory process after their
attraction and activation by endothelia cells.
Interleukin-6, produced by both cell types when
stimulated by AGEs in vitro, stimulates the liver
to produce acute-phase proteins.%70.71 |n a rat
model of chronic kidney allograft rejection, en-
hanced interleukin-6 expression was associated
with graft failure.”? Furthermore, human mono-
cytes stimulated by AGEs produce insulin-like
growth factor, which is known to stimulate mes-
angia cells.”®

Mesangial Cells, Smooth Muscle Cells, and
Tubular Cells

In response to AGES, mouse mesangia cells
showed increased expression of collagen typelV
messenger RNA, leading to accumulation of
extracellular matrix.” Accumulation of extracel-
lular matrix is one of the histological findingsin
chronic renal transplant dysfunction.* Further-
more, both mesangia cells and tubular cells
stimulated by AGESs produce transforming growth
factor-B.7>76 Transforming growth factor-8 medi-
ates the formation of fibrosis.”” Transforming
growth factor-B expression in a renal allograft
correlates with the development of interstitial
fibrosis.”® Moreover, increased transforming
growth factor-B expression has been found in
renal biopsy specimens of patients with chronic
renal transplant dysfunction.” Finally, smooth
muscle cell proliferation and tubular atrophy,
both found in chronic renal transplant dysfunc-
tion, have been associated with AGE accumula-
tion.558

AGE-INDUCED RENAL TISSUE DAMAGE

Although several AGES, such as pentosidine,
Ne-carboxymethyllysine, and Ne-carboxyethyl-
lysine, have been characterized, differences in
the pathogenic role between specific AGEs are
not yet clear. The pathogenic role of AGES on
renal tissue has been tested in various experimen-
tal studies.

In astudy by Vlassara et a2 50 healthy male
Sprague-Dawley rats were administered AGE-
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modified rat albumin, native rat abumin, or
AGE-modified rat albumin in combination with
aminoguanidine. Repeated injections with AGEs
resulted in increased AGE levels in blood and
kidney. AGE-injected animals showed an in-
crease in glomerular volume, glomerular base-
ment widening, and mesangial extracellular
matrix, indicating global and segmental glomer-
ulosclerosis. These structural changes were less
pronounced in rats administered aminoguani-
dine.8! Furthermore, AGE injections resulted in
increased total urinary protein excretion, which
was amost completely prevented with aminogua-
nidine treatment.

In another experiment by Vlassara' sgroup, the
effect of aminoguanidine on age-related renal
pathological characteristics was examined. Non-
diabetic female Sprague-Dawley rats and Fischer-
344 rats were treated with aminoguanidinefor 18
months. Aminoguanidine significantly decreased
renal AGE accumulation compared with non-
treated controls. M oreover, aminoguanidine partly
inhibited age-related albuminuria and protein-
uria. In Sprague-Dawley rats, the age-related
decrease in glomerular number, accompanied by
progressive glomerular sclerosis, was signifi-
cantly ameliorated by aminoguanidine treat-
ment. In Fischer-344 rats, observed age-related
changes were less pronounced. Conseguently, no
significant structural effects of aminoguanidine
were found in this strain.8?

Morerecently, Vlassara's group tested whether
adiet low in glycoxidation products could pre-
vent diabetic nephropathy in mice.83 Nonobese
diabetic mice were randomly assigned to an
AGE-rich or low-AGE diet. Both serum and
kidney AGE levels were significantly lower in
the low-AGE diet group. Rats fed an AGE-rich
diet developed progressive diabetic nephropathy
and had short survival, whereas rats fed a low-
AGE diet developed only minima glomerular
pathological characteristics and had a signifi-
cantly extended survival. It remains questionable
whether observed effects could be attributed to
the toxicity of AGEs alone. One should consider
possible effects of other toxic compoundsformed
under similar conditions as AGEs.# Further-
more, in relation to aimentary AGEs, antioxi-
dant effects of some of the Maillard reaction
products formed al so should be anticipated.®

Results from Vlassara's group®’-8 are in line
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with those reported by others. Soulis-Liparota et
al® examined the effect of aminoguanidine on
the development of albuminuria, mesangia ex-
pansion, and tissue fluorescence in streptozocin-
induced diabetic rats during a 32-week period.
Compared with untreated controls, aminoguani-
dine prevented diabetes-induced increased fluo-
rescence in isolated glomeruli and renal tubules,
but not in the whole kidney. Furthermore, amino-
guanidine treatment attenuated the increase in
albuminuria and mesangial expansion.

The use of other AGE inhibitorsin experimen-
tal studies, such as N-(2-acetamidoethyl)-hy-
drazine-carboximidamide-hydrochloride (ALT-
946),87 (+)-2-isopropylidenehydrazono-4-oxo-
thiazolidin-5-ylacetanilide (OPB-9195),%8 and
pyridoxamine,®® has confirmed the results of
studies mentioned. In conclusion, AGE-induced
renal tissue damage is well established in both
diabetic and nondiabetic animal models. Al-
though observed changes are often nonspecific,
they are similar to lesions observed in chronic
renal transplant dysfunction. Although heavily
modified proteins were used in the first study
described from Vlassara's group,8! recent studies
examined the effect of more clinically relevant
age-related or diabetes-related increases in AGE
accumulation on renal tissue. To date, no results
of experimental studieswith AGE inhibitors have
been published in chronic rena transplant dys-
function rat models. Moreover, no clinical trias
have been performed in kidney transplant recipi-
ents using AGE-lowering treatment modalities.

CONCLUSION

We discussed evidence for a pathogenic role
of AGEs in the development of chronic rend
transplant dysfunction. First, AGE levels are
elevated in the presence of some risk factors
involved in the development of chronic rend
transplant dysfunction. Although few data cur-
rently are available on the kinetics of tissue AGE
accumulation in the long run after transplanta-
tion, increased AGE levels were found in blood
of patients who developed chronic rena trans-
plant dysfunction. In vitro data showed that AGEs
may stimulate various cells to release mediators
that contribute to the renal damage found in
chronic renal transplant dysfunction. Based on
these findings, we proposed a pathophysiol ogical
mechanism of AGE-induced renal tissue dam-
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age. Finally, we discussed results of experimen-
tal studies on AGE-induced renal tissue damage.
To date, no studies, experimental or clinical,
have been performed to examine the effect of
AGE-lowering treatment modalities on the devel -
opment of chronic renal transplant dysfunction.

Opponents of AGE-related hypotheses argue
that AGEs are detectable only in trace concentra-
tionsin tissue proteins and therefore could not be
important pathogenic constituents. Proponents
argue that new AGEs are still being discovered
and little is known about AGE effector mecha-
nisms. However, various studies have associated
AGE accumulation with vascular disease pro-
cesses. Together, these studies illustrated the
pathogenic potential of AGEs in vitro and in
vivo. We expect clinical studies to confirm the
role of AGEsin the development of chronic renal
transplant dysfunction. In the future, therapy
with AGE-formation inhibitors or AGE cross-
link breakers may be warranted to preserve renal
function in transplant recipients.
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