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ABSTRACT 

Systemic autoimmune diseases are associated with inflammation and oxidative stress 

favouring the formation of AGE, able to modulate cellular functions by activation of RAGE. As 

RAGE expression is increased in an inflammatory milieu, present in patients with systemic 

autoimmune diseases, these patients are especially prone for the deleterious effects of AGE. 

Interaction of AGE with RAGE leads to intracellular signalling and subsequent expression of 

adhesion molecules, chemokines, proinflammatory cytokines and upregulation of RAGE 

itself. The AGE-RAGE interaction might act as a pro-inflammatory loop in these patients, 

contributing to chronic low grade inflammation rendering these individuals susceptible for 

development of accelerated atherosclerosis.  



 

AGE 

AGE are a class of compounds resulting from non-enzymatic addition of saccharide 

derivatives to proteins, lipids or nucleic acids, partly under influence of oxidative stress. This 

leads to slow formation of intermediary Schiff bases and Amadori products and finally to 

irreversible AGE, that can be formed more rapidly via intermediate formation of reactive 

carbonyl compounds such as methylglyoxal or glyoxal in circumstances characterized by 

oxidative and carbonyl stress. Systemic autoimmune diseases, like SLE and RA are 

associated with increased oxidative stress due to local and systemic inflammation. Oxidative 

activity of myeloperoxidase produced by activated phagocytes for example can contribute to 

formation of AGE (rev. in [1]). This way of AGE formation is independent of hyperglycemia, 

and may explain increased AGE formation in inflammatory conditions such as SLE and RA 

[2]. AGE accumulate continuously on long lived proteins in the ECM, and are present in 

inflamed tissue, such as rheumatoid synovia and atherosclerotic blood vessels [1]. AGE are 

not simply innocent bystanders as they modulate the function of cells by activation of several 

receptors including RAGE. This may be an important mechanism contributing to the 

pathogenesis of vascular inflammation and atherosclerosis. 

RECEPTORS FOR AGE 

Several receptors which bind AGE have been identified, these include RAGE, Mph SRA/B 

and receptors of the AGE-receptor complex: AGE-R1/2/3 (OST-48 / 80K-H / galectin-3) [1]. 

Mph SR and the AGE-receptor complex induce degradation of AGE, whereas RAGE triggers 

inflammation. 

RAGE is a multiligand transmembrane receptor belonging to the Ig-SF. It consists of one V-

type (variable) and two C-type (constant) extracellular Ig domains, a single pass 

transmembrane domain and a short negatively charged C-terminal intracellular signalling 

domain. Besides AGE a wide range of other endogenous ligands involved in inflammatory 

processes can bind to this receptor, including: S100/calgranulins, HMGB1, β-sheet fibrils, 

amyloid-β peptide, transthyretin, serum amyloid A, and β2-integrin. RAGE recognizes a 

three-dimensional structure rather than a specific amino acid sequence and therefore is 

considered being a PRR involved in recognition of DAMP. Under normal physiological 

conditions RAGE is expressed at low levels in several cell types including Mn/Mph, smooth 

muscle cells, neuronal cells, fibroblasts and ECs. Expression of the receptor can be 

upregulated by TNF-α and CRP as well as by AGE and other RAGE ligands [3, 4]. 

AGE-RAGE INTERACTION 

AGE have been described in association with a variety of pathological conditions and are 

implicated in vascular pathology by 3 general mechanisms. (I) cross-linking of AGE with 

proteins of the ECM decreases blood vessel elasticity. (II) intracellular AGE formation alters 

cellular functions. (III) AGE modulates cellular functions by activation of RAGE. Park et al 



 

showed that AGE accelerates atherosclerosis by interaction with RAGE using the 

atherosclerosis model of diabetic apoE KO mice. Blockage of AGE-RAGE interaction 

stabilizes established atherosclerotic lesions and suppresses vascular inflammation [5]. 

Ligand binding to RAGE generates ROS, seemingly linked to activation of the NADPH-

oxidase and mitochondrial electron transport system. ROS can in turn activate the redox-

sensitive transcription factor NF-ĸB, leading to transcription of genes involved in 

inflammatory processes such as atherosclerosis and may also lead to formation of additional 

AGE. Besides NF-ĸB activation several other pathways link ligand-RAGE interaction to gene 

expression, including p21ras, ERK1/2 (p44/p42), p38 and SAPK/JNK MAPK and the 

JAK/STAT pathway (rev. in [6]). AGE induce expression of several inflammation related 

molecules such as VCAM-1, ICAM-1, E-selectin, VEGF, MCP-1, MMP and several IL as well 

as RAGE [3, 7]. MCP-1 and IL attract and activate monocytes which, via endothelial 

adhesion molecules migrate into the arterial wall. RAGE itself serves as adhesion molecule 

interacting with β2-integrin [8]. AGE-RAGE interaction leads to increased vascular 

permeability and EC dysfunction, reflected by reduced production of NO and an imbalance in 

endothelium relaxing and contracting factors. EC activation and dysfunction are considered 

the first stages of atherosclerosis. 

There are also studies not confirming the role of AGE-RAGE in driving inflammation. 

Valencia et al found that binding to RAGE of AGE was not sufficient to induce VCAM-1 and 

TNF-α secretion and HMEC grown in vitro. They postulated that inflammatory responses 

could be attributed to endotoxin and metal ion contamination of AGE preparations [9]. 

Ballinger et al reported no effect of AGE on vascular smooth muscle cells in vitro probably 

due to very low expression of RAGE in these cells [10]. Other studies found that AGE were 

not able to bind RAGE on HUVEC, Mph and lung epithelial cells [11], suggesting that not all 

AGE form the necessary structure(s) to interact with RAGE. Moreover, it must be stressed 

that the effects of AGE in vitro are modest compared to effects of physiological 

concentrations of cytokines. Other RAGE ligands, such as HMGB1 or S100b, seem stronger 

inducers of inflammation. 

SOLUBLE RAGE (sRAGE) 

Several truncated forms of RAGE have been described of which C-truncated RAGE, also 

called sRAGE, has been studied most. sRAGE is generated by alternative splicing [12] or 

proteolytic cleavage of full-lenght RAGE (Raucci et al, in press) and lacks the 

transmembrane and intracellular domains. Circulating sRAGE binds ligands but does not 

lead to intracellular signalling. AGE are known to upregulate RAGE expression, and 

therefore may also be involved in regulation of sRAGE. A positive correlation between levels 

of sRAGE and AGE has been shown [13]. sRAGE is also associated with inflammation. In 

sepsis levels of sRAGE are elevated [14], in T2DM sRAGE was positively associated with 



 

inflammatory markers [15] and sRAGE was increased in quiescent and even more in active 

SLE [2]. It has been suggested that the net effect of sRAGE can be either anti-inflammatory 

or pro-inflammatory depending on the milieu. In the absence of ligands, sRAGE possesses 

pro-inflammatory properties in vitro by interaction with Mac-1. In the presence of HMGB1 

sRAGE suppressed inflammation by blocking the HMGB1-RAGE interaction [16]. Most 

studies support the concept that sRAGE has beneficial effects in a milieu rich in RAGE 

ligands such as AGE. sRAGE was found to block the effects of AGE on endothelial cells in 

vitro [12]. In diabetic apoE KO mice, administration of recombinant sRAGE was shown not 

only to suppress the development of atherosclerosis but also to stabilize established 

atherosclerosis [5] suggesting that exogenous sRAGE acts as decoy receptor. High serum 

levels of sRAGE were associated with longevity in humans [17]. Low levels of sRAGE are 

associated with increased mortality in renal transplant recipients [18] and were independently 

associated with coronary artery disease [19]. We assume that sRAGE is protective against 

AGE-elicited cellular activation. Compensatory anti-inflammatory mechanism may be 

responsible for increased sRAGE production during inflammation. 

PHARMACOLOGICAL INTERVENTIONS 

Many approaches may help counteracting the deleterious effect of RAGE activation in 

patients with systemic autoimmune diseases. (I) Reducing formation of AGE. Effective 

immunosuppression resulting in reduced inflammation and ROS limit AGE formation. ARB 

and ACEi lower AGE formation by scavenging ROS. Aminoguanidine, pyridoxamine, and 

OPB-9195, inhibit AGE formation by trapping the critical AGE precursors methylglyoxal and 

glyoxal [1]. (II) Prevention of AGE-RAGE interaction. Attempts to develop sRAGE as a 

treatment for humans have been made [20]. In addition, heparin binds to RAGE without 

inducing inflammation, suggesting that it may be applicable as a RAGE blocker 

(unpublished). (III) Application of AGE-breakers. These compounds are successful in 

cleavage of protein cross-links formed by AGE and through this improved artery compliance 

[1].
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LIST OF ABBREVIATIONS 
 
ACEi angiotensin converting enzyme inhibitor 
AGE advanced glycation end products 
AGE-R advanced glycation end product receptor 
ApoE apolipoprotein E 
ARB angiotensin receptor blocker 
CRP C-reactive protein 
DAMP damage associated molecular pattern 
EC endothelial cell 
ECM extracellular matrix 
ERK extracellular signal-regulated kinase 
HMEC human microvascular endothelial cell 
HMGB-1 high mobility group box 1 protein 
HUVEC human umbilical vein endothelial cells 
ICAM-1 intracellular adhesion molecule-1 
Ig immunoglobulin 
Ig-SF immunoglobulin superfamily 
IL interleukine 
JAK Janus kinase 
JNK c-Jun N-terminal kinase 
KN mice knockout mice 
MAPK mitogen-activated protein kinase 
MCP-1 monocyte chemotactic protein-1 
MMP matrix metalloproteinases 
Mn monocyte 
Mph macrophage 
Mph SR macrophage scanvenger receptor 
NADPH nicotinamide adenine dinucleotide phosphate 
NF-κB nuclear factor-κB 
NO nitric oxide 
PRR pattern recognition receptor 
RA rheumatoid arthritis 
RAGE receptor for advanced glycation end products 
ROS reactive oxygen species 
S100b s100b calcium binding protein b 
SAPK stress-activated protein kinase 
SLE systemic lupus erythematosus 
sRAGE soluble receptor for advanced glycation end products 
STAT signal transducer and activator of transcription 
T2DM type 2 diabetes mellitus 
VCAM-1 vascular cell adhesion molecule-1 
VEGF vascular endothelial growth factor 
 


