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Objective:  High  density  lipoprotein  (HDL)  particles  protect  apolipoprotein  B-containing  lipoproteins  from
oxidative  modification.  An  impaired  anti-oxidative  functionality  of  HDL  in  type 2  diabetes  mellitus
(T2DM)  may  contribute  to  enhanced  formation  of  oxidative  stress  products,  such  as  Advanced  Glyca-
tion  Endproducts  (AGEs).  We  tested  whether  in  T2DM  the  HDL  anti-oxidative  capacity  is  related  to  the
accumulation  of  AGEs  in  the  skin.
Methods:  Skin  autofluorescence  (AF),  a  non-invasive  read-out  for  AGEs,  and  HDL  anti-oxidative  capac-
ity,  i.e.  the  ability  of  HDL  to  protect  against  LDL  oxidation  in  vitro,  were  assessed  in 67  non-smoking
T2DM  patients  without  complications  (median  age:  60 (53–65),  60%  males,  6.5  (5.2–8.5)  years  of  diabetes
duration).
Results:  In  univariate  analysis,  skin  AF  correlated  inversely  with  HDL  anti-oxidative  capacity  (r  = −0.305,
P  <  0.02),  but  not  with  HDL  cholesterol  or apolipoprotein  A-I.  HDL  anti-oxidative  capacity  correlated
inversely  with  glucose,  HbA1c, triglycerides,  and  insulin  resistance  (homeostasis  model  assessment)

(P  <  0.05  to  P  ≤  0.001).  Multiple  linear  regression  showed  that  skin  AF  remained  inversely  related  to  HDL
anti-oxidative  capacity  (partial  r  = −0.314,  P =  0.015)  taking  account  of  age, plasma  glucose,  non-HDL
cholesterol,  triglycerides,  HOMAir, and  CRP.
Conclusion:  These  findings  suggest  that skin  AF  is  inversely  related  to  the  HDL  anti-oxidative  capacity
rather  than  to  the  HDL  cholesterol  concentration  in T2DM.  Impaired  anti-oxidative  functionality  of  HDL

 accu
could  contribute  to  tissue

. Introduction

Type 2 diabetes mellitus (T2DM) is associated with an increased
ardiovascular morbidity and mortality [1].  A commonly proposed
athogenetic mechanism is increased oxidative stress in vivo [2].
onsequently, oxidation of lipoproteins is enhanced in the vascu-

ar wall, promoting inflammation and fatty streak formation, which
ltimately leads to clinically manifest atherosclerotic cardiovascu-

ar disease [3].

T2DM is hallmarked by high triglycerides and low high density

ipoprotein (HDL) cholesterol as well as by oxidative modifica-
ion of low density lipoprotein (LDL) particles [4].  HDL has the
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mulation  of  AGEs.
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capacity to inhibit oxidative modification of apolipoprotein (apo)
B-containing lipoproteins [5]. Importantly, in early T2DM this
capacity may  be decreased, thereby contributing to an increased
formation of oxidized LDL [6].  An increased oxidative stress burden
also accelerates the generation of advanced glycation endprod-
ucts (AGEs), i.e. irreversibly modified proteins, lipids, and nucleic
acids that are formed by non-enzymatic glycation and oxidation
[7]. AGEs are commonly believed to contribute to the pathogenesis
of atherosclerosis [8].  Using their characteristic autofluorescence
pattern [9],  tissue accumulation of AGEs can be non-invasively
assessed by measuring skin autofluorescence (AF) [10]. Of note,
previous reports documented that increased skin AF in T2DM is
related to microvascular and macrovascular complications and rep-
resents an independent predictor of incident cardiovascular disease

(CVD) [11,12].  Collectively, these findings [6,11,12] raise the pos-
sibility that enhanced accumulation of tissue AGEs, as assessed
by skin AF, may  be associated with decreased HDL functional-
ity.

dx.doi.org/10.1016/j.atherosclerosis.2011.05.011
http://www.sciencedirect.com/science/journal/00219150
http://www.elsevier.com/locate/atherosclerosis
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The present study was initiated to examine the extent to which
he anti-oxidative capacity of HDL is associated with skin AF in
2DM patients without clinically manifest CVD, nephropathy, and
pre)proliferatve retinopathy.

. Materials and methods

The protocol was approved by the medical ethics commit-
ee of the University Medical Center Groningen, The Netherlands.
2DM patients (aged >18 years) were recruited by advertise-
ent in local newspapers and provided written informed consent.

2DM had been previously diagnosed by primary care physi-
ians using glucose cut-off values as defined by the World
ealth Organization (i.e. fasting plasma glucose >7.0 mmol/L,
on-fasting glucose >11.1 mmol/L, measured on two  independent
ays). All T2DM patients who responded to the advertisement
ere considered for participation. Clinically manifest cardiac

nd pulmonary abnormalities, renal insufficiency (defined as a
erum creatinine >100 �g/L), overt proteinuria, microalbuminuria
defined as a urine albumin/creatinine ratio of 2.5–25 mg/mmol
or men  and 3.5–25 mg/mmol  for women), (pre)proliferative
etinopathy, thyroid disorders (abnormal thyreotropin level), liver
iseases (elevated serum transaminases), pregnancy, primary
yslipidemias, a history of cancer, inflammatory or infectious
isease, a dark skin type, current smoking and heavy alcohol
onsumption (>3 drinks per day) were exclusion criteria. T2DM
atients using insulin, thiazolidinediones or lipid lowering drugs
ere also excluded. These exclusion criteria were applied to

void possible confounding effects of co-existent clinical condi-
ions, as well as of smoking, heavy alcohol consumption and
ipid lowering drugs on HDL function and lipid levels. The use
f metformin, sulfonylureas, and antihypertensive drugs was
llowed.

Systolic and diastolic blood pressure was measured after
5 min  rest with a sphygmomanometer in sitting position.
MI  was calculated as weight divided by height squared
in kg/m2). Insulin sensitivity was assessed as homeosta-
is model assessment (HOMAir), using the equation: fasting
lasma insulin (mU/L) × glucose (mmol/L)/22.5 [13]. A strong
orrelation of HOMAir with glucose clamp determined insulin-
ediated whole body glucose disposal has been demonstrated

n T2DM patients treated with diet and/or oral glucose lower-
ng drugs [14]. All participants were studied after an overnight
ast.

.1. Skin autofluorescence

Skin AF was determined using the Excitation–Emission Matrix
canner (EEMS), an adapted set-up of the AGE Reader that was
sed in earlier publications from our laboratory [15]. The EEMS
et-up assesses skin AF similar to the AGE Reader, but has the addi-
ional potential to discriminate between AF spectra obtained at
arious excitation wavelengths. AF values obtained with the EEMS
re slightly lower than AF values measured with the AGE Reader,
or which reference values have been published [16]. This can be
xplained by some differences between both set-ups. With the
EMS set-up using in the current study, median skin AF amounted
o 1.56 (range 0.65–2.58) AU, measured in 68 non-diabetic Cau-
asian subjects, aged 34–75 years. The EEMS technique and set-up
ave been described in detail elsewhere [17]. Briefly, approxi-
ately 4 cm2 of the skin of the ventral site of the lower arm
s illuminated by a computer driven system with a 75 W Xenon
amp and a 0.2 m f/4 monochromator (PTI, NJ, USA). A series of

easurements is thereby obtained for each subject, varying the
eak excitation wavelength from 355 to 405 nm with 5 nm interval
sis 218 (2011) 102– 106 103

steps. To derive the mean skin AF from the excitation–emission
matrices, the AF values for each selected peak excitation wave-
length were calculated by dividing the mean emitted intensity
per nm in the range between 420 and 600 nm by the mean
reflected excitation intensity per nm between 300 and 420 nm
for a given excitation wavelength and expressed in arbitrary units
(AU). Thereafter, mean skin AF was  determined by calculating for
each excitation step the contribution in excitation light inten-
sity corresponding to that of a conventional AGE Reader lamp
intensity spectrum with a maximum wavelength at 370 nm.  The
AF value was  calculated off-line by automated analysis and is
observer-independent. As skin colour can also influence the AF
measurement, the skin AF value was corrected for reflection of
the skin when reflection was  below 12%. Repeated measurements
in controls and diabetic patients showed an intra-individual coef-
ficient of variation of 5.0% on a single day and 5.9% for seasonal
changes.

2.2. Laboratory analyses

Venous blood samples were collected into EDTA-containing
tubes (1.5 mg/mL). Plasma was prepared by centrifugation at
1400 × g for 15 min  at 4 ◦C. Glucose and HbA1c were measured
shortly after blood collection. Samples for other assays were kept
frozen at −80 ◦C until analysis.

Plasma cholesterol and triglycerides were assayed by rou-
tine enzymatic methods (Roche/Hitachi cat nos. 11876023 and
11875540 respectively, Roche Diagnostics GmbH, Mannheim,
Germany). HDL cholesterol was measured with a homoge-
neous enzymatic colorimetric test (Roche/Hitachi). Non-HDL
cholesterol was  calculated as the difference between total
cholesterol and HDL cholesterol. ApoA-I and apoB were
quantified by immunoturbidimetry (Roche/Cobas Integra Tina-
quant cat nos. 03032566 and 033032574, respectively, Roche
Diagnostics).

To determine the anti-oxidative functionality of HDL, first
apoB-containing lipoproteins were precipitated by mixing 75 �l
polyethylene glycol (PEG) 6000 in 10 mM HEPES (pH 8.0) with
150 �l of plasma followed by a 30 min  incubation on ice. Sam-
ples were centrifuged at 2000 × g at 4 ◦C for 30 min  and HDL
cholesterol concentrations were measured in the supernatants
with a commercially available kit (Roche Diagnostics, Mannheim,
Germany). The HDL-mediated protection against oxidation of
native LDL was  assayed following a recently described published
method [18]. Briefly, LDL was isolated from a young healthy
normolipidemic donor by density gradient ultracentrifugation
(1.019 < d < 1.063) as described [19]. Then individual HDL sam-
ples (0.26 mmol/L cholesterol) were mixed with aliquots of native
LDL (1.95 mmol/L cholesterol) followed by the addition of 2,2′-
azobis(2-methylpropionamidine) dihydrochloride (AAPH, Cayman
Chemicals, Ann Arbor, MI,  USA; final concentration: 1 mM in a
total volume of 110 �L) to induce oxidation. After an incubation
for 24 h at 37 ◦C, TBARS were measured to determine the achieved
degree of LDL oxidation exactly as detailed previously [19]. The
HDL anti-oxidative capacity was determined as the percent reduc-
tion achieved of the respective individual HDL preparations in
comparison to the maximum amount of TBARS formation in a reac-
tion without HDL being present. Thereby, higher values indicate
more efficient protection against oxidation. In 18 non-diabetic con-
trol subjects, aged 28–58 years, the HDL anti-oxidative capacity
amounted to 68 (range 57–82) % inhibition. The inter-assay CV was
5.1%.
Insulin was  measured with a microparticle enzyme immunoas-
say (AxSYM insulin assay; Abbott Laboratories, Abbott Park IL,
USA). High-sensitive-CRP (CRP) was determined by nephelometry
with a lower limit of 0.175 mg/L (BNII N; Dade Behring, Marburg,
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Table  1
Clinical characteristics, skin autofluoresence (skin AF), HDL anti-oxidative ability,
plasma glucose, HbA1c, insulin, HOMAir, CRP, lipids and lipoproteins in 67 type 2
diabetic subjects.

Type 2 diabetic patients (n = 67)

Age (years) 60 (53–65)
Sex (M/F) 40/27
Skin AF (AU) 1.71 (1.43–2.10)
HDL anti-oxidative capacity (%) 66 (59–73)
Systolic blood pressure (mm  Hg) 142 (132–158)
Diastolic blood pressure (mm  Hg) 86 (82–92)
BMI  (kg/m2) 28.7 (25.7–32.6)
Glucose (mmol/L) 8.6 (7.4–10.2)
HbA1c (%) 6.6 (6.2–7.4)
Insulin (mU/L) 10.9 (7.3–17.0)
HOMAir (mU  × mmol/(L2 × 22.5)) 4.01 (2.74–6.96)
CRP (mg/L) 1.74 (1.18–4.15)
Total cholesterol (mmol/L) 5.52 (4.77–6.05)
Non-HDL cholesterol (mmol/L) 4.04 (3.45–4.83)
HDL cholesterol (mmol/L) 1.16 (0.97–1.54)
Triglycerides (mmol/L) 1.79 (1.21–2.30)
Apolipopoprotein B (g/L) 0.94 (0.78–1.09)
Apolipopoprotein A-I (g/L) 1.28 (1.15–1.52)
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Table 2
Univariate relationships of skin autofluorescence (skin AF) and HDL  anti-oxidative
capacity with clinical variables, glucose, HbA1c, lipids, insulin, HOMAir, and
apolipoproteins in 67 type 2 diabetic subjects.

Skin AF HDL anti-oxidative
capacity

HDL anti-oxidative capacity −0.305***

Age 0.247* −0.028
Diabetes duration 0.156 0.045
BMI  −0.037 −0.030
Systolic blood pressure 0.090 0.024
Diastolic blood pressure 0.010 −0.144
Glucose −0.021 −0.400****

HbA1c −0.028 −0.328***

Insulin 0.070 −0.09
HOMAIR 0.069 −0.264**

CRP −0.235* −0.067
Total cholesterol −0.179 −0.130
Non-HDL cholesterol −0.209* −0.120
HDL cholesterol 0.024 0.175
Triglycerides −0.215* −0.308**

ApoA-I −0.085 −0.067
ApoB −0.240* −0.048

Spearman’s rank correlation coefficients are shown. BMI: body mass index. HOMAir:
homeostasis model assessment of insulin sensitivity.

* P < 0.10.
** P < 0.05.

HDL anti-oxidative capacity was  also significant in alternative
models with HbA1c instead of glucose (  ̌ = −0.320, P = 0.016)
and with apoB instead of non-HDL cholesterol (  ̌ = −0.317,
P = 0.016).

Table 3
Multiple linear regression analyses showing relationships of skin autofluorescence
(skin AF) with age, HDL anti-oxidative capacity, plasma glucose, Ln HOMAir, non-
HDL cholesterol, Ln triglycerides, and Ln CRP in 67 type 2 diabetic subjects.

Independent variables Skin AF

 ̌ Partial r P-value

Age 0.299 0.315 0.014
HDL  anti-oxidative capacity −0.324 −0.314 0.015
Glucose −0.108 −0.096 0.464
Ln  HOMAir 0.135 0.121 0.358
Ln  CRP −0.120 −0.116 0.379
Non-HDL cholesterol −0.186 −0.162 0.217
ata in median (interquartile range). M:  male; F: female; BMI: body mass index;
OMAir: homeostasis model assessment of insulin sensitivity.

ermany). Glucose was measured with an APEC glucose analyzer
APEC Inc., Danvers, MA,  USA). Glycated hemoglobin (HbA1c) was

easured by high performance liquid chromatography (Bio-Rad,
eenendaal, The Netherlands; reference range 4.6–6.1%).

.3. Statistical analysis

Data are given in median (interquartile range). Gender dif-
erences were determined by Mann–Whitney U test. Univariate
elationships were calculated using Spearman’s rank correlation
nalysis. Multiple linear regression analysis was  performed to
isclose independent contributions of variables. Logarithmically
ransformed values for triglycerides, HOMAir, and CRP were used
ecause of skewed distribution. Two-sided P-values < 0.05 were
onsidered significant.

. Results

The clinical and laboratory characteristics of the study pop-
lation which consisted of 67 Caucasian patients are given in
able 1. Diabetes duration was 6.5 (5.2–8.5) years. Eighteen
atients had received dietary advice without drug therapy. Four-
een patients were treated with sulfonylurea alone, 14 were treated
ith metformin alone and 21 were using both types of medi-

ation. Other hypoglycemic drugs were not used. Twenty-seven
articipants were using antihypertensive drugs (most frequently,
ngiotensin-converting enzyme inhibitors, angiotensin II antago-
ists, diuretics and ˇ-blockers). Of 27 female patients included, 21
ere post-menopausal. One post-menopausal woman used ralox-

fene. Neither skin AF (1.72 (1.39–2.01) and 1.64 (1.43–2.31) AU in
en and women, respectively; P = 0.65), nor the HDL anti-oxidative

apacity (65 (57–73) and 66 (59–73) % inhibition in men  and
omen, respectively; P = 0.85) differed between genders.

As demonstrated in Table 2, skin AF was inversely correlated
ith the HDL anti-oxidative capacity in univariate analysis. Skin
F tended to be correlated positively with age and inversely with
lasma non-HDL cholesterol, triglycerides, apoB and CRP, but was
ot associated with HDL cholesterol and apoA-I. The HDL anti-

xidative capacity on the other hand was inversely correlated
ith plasma glucose, HbA1c, triglycerides and HOMAir. HDL anti-

xidative capacity was also unrelated to HDL cholesterol and
*** P < 0.02.
**** P ≤ 0.001.

apoA-I. Neither skin AF, nor HDL anti-oxidative capacity was  sig-
nificantly correlated with plasma insulin.

In age-adjusted multiple linear regression analysis it was first
demonstrated that the inverse relationship of skin AF with the HDL
anti-oxidative capacity was unaffected by either HDL cholesterol or
apoA-I (  ̌ = −0.243, P = 0.039 and  ̌ = −0.241, P = 0.045, respectively;
data not shown). To determine which factors were independent
predictors of skin AF, multiple linear regression analyses were
carried out including those variables to which skin AF or HDL anti-
oxidative capacity was  correlated at P < 0.10 in univariate analysis.
In a model, which besides age and HDL anti-oxidative capacity
included glucose, non-HDL cholesterol, triglycerides, HOMAir and
CRP, skin AF was only related to HDL anti-oxidative capacity and age
(Table 3). Skin AF remained inversely related to HDL anti-oxidative
capacity (  ̌ = −0.243, P = 0.047) and positively with age (  ̌ = 0.318,
P = 0.010) after adjustment for the use of anti-hypertensive drugs
(  ̌ = 0.140, P = 0.25), sulfonylurea (  ̌ = −0.263, P = 0.031) and met-
formin (  ̌ = 0.177, P = 0.145). The relationship of skin AF with
Ln  triglycerides −0.106 −0.083 0.526

HOMAir: homeostasis model assessment of insulin sensitivity. ˇ: standardized
regression coefficient. Partial r: partial correlation coefficient.
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. Discussion

This cross-sectional study demonstrates for the first time that
issue accumulation of AGEs, as assessed by skin AF, is inversely
ssociated with the anti-oxidative capacity of HDL in non-smoking
ubjects with T2DM without severe long-term complications. This
ssociation was found to be independent of potential confounding
actors such as age, glycemic control, plasma lipids, insulin resis-
ance, and CRP levels. Our findings are, therefore, consistent with
he possibility that a decreased ability of HDL to protect against
DL oxidation may  contribute to the formation of oxidative stress
roducts, such as AGEs. Importantly, analysis of HDL functionality
evealed potentially relevant clinical information with respect to
kin AF that was not obtained with HDL cholesterol or apoA-I mass
easurements as such.
The pathogenetic role of AGEs in the development of diabetic

omplications is well recognized [8].  Based on skin biopsy studies
n T2DM, hemodialysis, and healthy subjects it was  demonstrated
reviously that skin AF can be regarded as a proxy for tissue AGE
ccumulation [10,12,20].  Furthermore, skin AF is related to serum
evels of neopterin and to the soluble isoform of the receptor
or AGEs, underscoring an intricate relation between skin AGEs
nd the activation of oxidative and inflammatory pathways [21].
ur current data in T2DM patients without severe micro- and
acrovascular complications extend observations that the anti-

xidative capacity of HDL is inversely related to circulating AGE
evels in T2DM patients with nephropathy [22]. Taken together,
hese recent [22] and the present observations agree with the
ypothesis that impaired HDL functionality could contribute to the
evelopment of long-term diabetic complications.

In this report, plasma glucose as well as HbA1c levels were found
o correlate inversely with the ability of HDL to protect against
DL oxidation in univariate analysis. This finding is in line with
nother report demonstrating an inverse relation between HDL
nti-oxidative capacity and hyperglycemia in recent onset T2DM
6]. Of note, actual plasma glucose and HbA1c levels did not cor-
elate with skin AF measurement, in keeping with the possibility
hat additional oxidative stress generating factors are required for
GE accumulation [7,21].  In other T2DM studies, we  also found no
r only weak relations between skin AF and short term glycemic
ontrol [23]. In fact, skin AF appears to be a better predictor of long
erm complications than HbA1c, and complements the UKPDS risk
ngine in identifying those subjects with a particularly high risk for
eveloping cardiovascular events [11].

Population studies have consistently shown that plasma HDL
holesterol levels inversely predict CVD [24–26].  Notably, evidence
s accumulating in support of the hypothesis that abnormalities in
DL functionality may  be more important than mere changes in
DL cholesterol in the pathogenesis of atherosclerosis [27]. HDL
articles carry several proteins with anti-oxidative activity, which
ndows them to protect LDL against oxidative stress [28]. Indeed,
t has been shown that anti-oxidative properties of HDL subfrac-
ions correlate negatively with circulating markers of generalized
ipid-oxidation, such as plasma 8-isoprostane levels [29]. Valida-
ion of our data either in other cross-sectional or in prospective
tudies would be desirable. Nonetheless, our finding that skin AF
orrelated inversely with the ability of HDL to protect against LDL
xidation, but not with the plasma HDL cholesterol concentration,
ould support the potential clinical importance of HDL function-

lity assessment.
The method that we currently used to assess skin AF (EEMS)

s slightly different from AF measurements using the AGE-Reader,

hich was used another study [17]. Although the physical princi-
les and the optical path and design are similar, the absolute AF
alues obtained by these set-ups, cannot be directly compared.
ubjects with a dark skin type cannot be reliably measured with

[

sis 218 (2011) 102– 106 105

the EEMS setup. The current study only included Caucasian sub-
jects with a Fitzpatrick skin type I–IV. Furthermore, since not all
AGEs encompass fluorescent properties, skin AF is only represen-
tative of part of the total AGE burden. However, in our validation
studies, skin AF also correlated strongly with non-fluorescent
AGEs, including carboxymethyllysine, carboxyethyllysine [10,30].
Several other methodological issues need to be addressed. The
HDL anti-oxidative functionality test does not as such represent
a classical clinical chemistry measurement, since this assay sys-
tem is dependent as starting material on primary LDL from healthy
donors. Of note, the relative inhibition of oxidation of native LDL
by respective HDL preparations is remarkably stable.

Since we  carried out a cross-sectional study, no conclusion is
allowed whether an impaired ability of HDL to protect against LDL
oxidation contributes to or predicts enhanced tissue AGEs accumu-
lation over time. Skin AF has been consistently found to be higher in
previous reports in which diabetic patients were directly compared
to control subjects [10,11]. Although a limitation of our study is that
we included diabetic patients only, skin AF (also measured using the
EEMS setup) was previously reported to be lower in control sub-
jects than the values observed in the current study [31]. Moreover,
validation of the current results in large scale cross-sectional and
prospective studies is desirable.

In conclusion, skin AF, a non-invasive marker of tissue AGEs, was
inversely related to the anti-oxidative capacity of HDL from patients
with T2DM. These data raise the possibility that a decreased anti-
oxidative capacity of HDL may  contribute to tissue accumulation of
AGEs, and thereby could be involved in the development of long-
term diabetic complications.
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