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Abstract

A commonality among the chemically disparate compounds
that inhibit the formation and accumulation of advanced
glycation end products (AGEs) or their signalling pathways
is their end organ protection in experimental models of dia-
betes complications. Although this group of therapeutics
are structurally and functionally distinct with numerous
mechanisms of action, the most important factor governing
their therapeutic capability is clearly their ability to alleviate
the tissue burden of advanced glycation, rather than the bio-
chemical mechanism by which this is achieved. However, it
remains to be determined if it is the reduction in tissue AGE
levels per se or inhibition of downstream signal pathways
which is ultimately required for end organ protection. For
example, a number of these agents stimulate antioxidant
defences, modify lipid profiles and inhibit low-grade inflam-
mation. These novel actions emphasise the importance of
further examination of the advanced glycation pathway and
in particular the diverse action of these agents in ameliorat-
ing the development of diabetic complications such as ne-

phropathy. Copyright © 2009 S. Karger AG, Basel

Introduction

Hemodynamic and metabolic pathways induced by
hyperglycaemia, are thought to mediate end organ dam-
age in diabetic renal disease [1-4]. Indeed strict glycaemic
control [5, 6] and blood pressure lowering therapies in-
cluding those agents which provide blockade of the re-
nin-angiotensin system [5, 7] remain the most successful
clinically applicable therapeutic interventions for diabet-
ic micro- and macrovascular complications.

One such metabolic pathway facilitated by the hyper-
glycaemic environment which is characteristic of diabe-
tes is advanced glycation, where the free amino groups of
proteins and amino acids are irreversibly modified as the
result of complex non-enzymatic biochemistry [8]. Al-
though physiologically, the accumulation of advanced
glycation end products (AGEs) is mostly the result of ag-
ing and metabolism including senescent labelling of pro-
teins, it is also common in modern food preparation and
processing [9]. Therefore, it is postulated that both en-
dogenously [10] and exogenously [10] derived AGEs di-
rectly contribute to the body’s AGE pool.

Of particular interest is that both glycaemic control
[11] and blockade of the renin-angiotensin system [12, 13]
attenuate the accumulation of tissue AGEs, as do a num-
ber of agents which are often administered to diabetic
patients including thiazolidinediones [14] and high-dose
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aspirin [15, 16]. The anti-diabetic agent metformin can
also lower circulating levels of reducing sugars [17, 18]
and consequently AGEs.

Many of the pathogenic pathways known to mediate
diabetic complications are associated with the accumula-
tion of AGEs and/or activation of their downstream sig-
nalling pathways. Among these, hyperlipidaemia is often
another metabolic characteristic of patients with diabe-
tes [19, 20]. Furthermore, persistent hyperglycaemia also
promotes a pro-oxidant environment, with a number of
studies suggesting direct modulation and exacerbation of
oxidative stress by AGEs [21]. In addition to oxidative
stress, tissue-specific inflammation also occurs, most
likely resultant from signalling molecules including those
activated by specific AGE receptors. These include
amongst others, nuclear factor-«kB [22], mitogen-activat-
ed protein kinases (MAPK) [23] and protein kinase C [24]
which facilitate chemotaxis of leukocytes and the pro-
duction of proinflammatory and profibrotic cytokines,
all known to contribute to progressive diabetic microvas-
cular complications.

Within the context of this review, we discuss the cur-
rent therapies available for lowering or preventing the ac-
cumulation of AGEs and those which prevent down-
stream signalling from receptor ligation. We investigate
why such disparate agents have many common down-
stream outcomes, which may contribute to their end or-
gan protective properties in diabetes. It is prudent to sug-
gest that future therapies for microvascular complica-
tions need to address these common points via specific
targeting of sites downstream of advanced glycation, in
particular those not affected by current clinical regimens
such as RAS blockade.

Therapeutic Modulation of Advanced Glycation
End Products

Advanced Glycation as a Specific Target for Diabetic

Nephropathy

AGEs are a heterogeneous and complex group of mod-
ifications, which play an important role in the pathogen-
esis of diabetic nephropathy. AGEs are formed as a result
of non-enzymatic biochemical reactions initiated as the
Maillard reaction [25]. Studies in type 1 diabetic patients
show that AGE accumulation predicts the severity of mi-
cro- and macrovascular complications. Specifically, se-
rum AGE levels are significantly elevated with the pro-
gression to microalbuminuria and subsequently to overt
nephropathy [26]. In addition, skin collagen-associated
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AGE concentrations correlate with the severity of micro-
vascular complications in patients with long-standing
type 1 diabetes [11] and with carotid intimal thickening
[27]. In type 2 diabetic patients, hypertension and isch-
emic heart disease are known to correlate with circulat-
ing AGE levels, suggesting that they may be potential bio-
markers of diabetic cardiovascular risk [28]. Although
AGE modifications are facilitated by the hyperglycaemic
environment, they can be produced in other contexts. In-
deed, some studies demonstrate that AGE levels only
loosely correlate with glycaemic control in the clinical
setting [11, 29]. This finding may explain the paradoxical
progression of diabetic complications in some patients
with comparatively good glycaemic control. Further to
this, within the DCCT study, AGE levels were a better
predictor of progression to complications than HbA,,
with over a third of the variance in complications attrib-
uted to differences in AGE indices [11]. This is consistent
with the hypothesis that other factors such as oxidative
stress may contribute to the production and accumula-
tion of AGEs in patients with good glycaemic control [30,
31).

There is no consensus on which AGE modifications
are the most pathogenic in diabetes. Many of the AGE
cross-linked moieties, such as pentosidine, have intrinsic
fluorescence, and therefore tissue and plasma fluores-
cence may be used as surrogate markers of AGE modifi-
cations. A marked increase in fluorescence within the
kidney [32], the retina [33], skin [34, 35] and other sites of
diabetic microvascular disease [36] have been found with
the progression of diabetes. Alterations in renal and he-
patic function are also associated with increased tissue
fluorescence, reflecting the role of these organs in the
clearance of AGEs [37]. In addition, circulating levels of
fluorescent AGEs correlate with complications in pa-
tients with type 1 and type 2 diabetes [38, 39].

Other AGEs, such as N-carboxymethyllysine (CML),
which are neither cross-links nor fluorescent, have been
found to be elevated within serum of type 1 diabetic pa-
tients [40]. Type 2 diabetic patients follow a similar pat-
tern with increases in circulating CML [41] and the pre-
cursor dicarbonyl methylglyoxal [42]. Elevations in CML
levels have been associated with the presence of micro-
vascular complications, including retinopathy and ne-
phropathy [43].

AGE:s can elicit their effects via ligation to receptors.
Receptors for AGEs may be loosely grouped as either in-
flammatory, such as the receptor for advanced glycation
end products (RAGE) [44], or those involved in AGE
clearance (e.g. AGE-R1 [45], AGE-R3 [46], CD36 [47] and
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Table 1. Summary of AGE-lowering therapies with diverse mechanisms of action in diabetic complications

Therapy Tissue Circulating ~ Glycemic NF-«B ROS PKC/MAPK
AGEs AGEs control activity activity

Benfotiamine J® J% J° Jus J e 16
Thiamine ND ND J® /3 U3 e
Pyridoxamine NEcad ND ND ND Jus ND
Aminoguanidine % J J ND S RREY
OPB-9195 | 118,180 [ 180 ND ND [ 818 8
ACE inhibitors J 62 J 1Bz 11 J o /B REE /7
AT1 antagonists A ND ND J1%7 /B /129
Aspirin J» ND ND ;%6 140 [ %6122 /12
Metformin JY J 9 ND | 130 W 120
Thiazolidinediones ND J 17 J J“ J ND
sRAGE ND ND ND /% 19159 ND
Alagebrium chloride J7 J7 ND Ju g 106
Carnosine J 7374 J7 ND J J7 ND

\ = Reported benefits with reference numbers; ND = not determined to date.

Scr-11 [48, 49]). Vascular, renal, neuronal and haemato-
poietic cells are all known to express receptors for AGEs
[45, 46, 50-54].

Therapeutics which Inhibit the Accumulation of AGEs

Numerous AGE inhibitors have been identified to
date, which vary in their mechanisms of action and yet
all have the same outcome, a reduction in tissue AGE bur-
den. Some target the precursors of AGEs, thus preventing
their formation and accumulation, whilst others target
receptor signalling. Indeed, a number of inhibitors ex-
hibit other benefits such as control of glycaemic indices
and hyperlipidaemia in addition to reduction in AGE ac-
cumulation (table 1).

AGE Formation Inhibitors

Some of the earliest identified inhibitors of AGE-for-
mation, such as aminoguanidine [55] and OPB-9195 [56]
are known to reduce AGE accumulation by scavenging
free reactive carbonyl groups [56-59]. More recently,
novel therapeutics, such as the anti-hyperglycaemic agent
metformin, trap reactive carbonyl molecules in addition
to lowering blood glucose, properties most likely attribut-
able to its guanidine moiety [60]. Aspirin has also dem-
onstrated the capacity to decrease AGE accumulation by
targeting preformed intermediates [15], by chelation of
copper and other transition metals which contribute to
ROS production, as well as scavenging free carbonyls.

Commonalities among Methods of AGE
Blockade

Compounds which target the renin-angiotensin sys-
tem, including angiotensin-converting enzyme (ACE)
inhibitors and angiotensin type 1 (AT1) receptor antago-
nists, are the most effective treatments for diabetic ne-
phropathy [7, 61]. Not surprisingly, these agents have
shown that in addition to their hemodynamic actions,
they have the added benefit of reducing AGE accumula-
tion [12, 13, 62, 63]. ACEi and AT-1 antagonists decrease
AGE accumulation by trapping reactive carbonyls, de-
creasing the formation of hydroxyl and carbon-centred
radicals and also via chelation of metal ions [13].

LR-90 (methylene bis-[4,4"-(2-chloropheylureido
phenoxysiobutyric acid)]) has been identified as a potent
inhibitor of renal and circulating AGE accumulation [64,
65]. It is thought to reduce AGE accumulation via its po-
tent metal chelating abilities and its interaction with re-
active carbonyl species [65]. Moreover, its renoprotective
benefits, such as improvements in albuminuria, creati-
nine clearance and glomerular sclerotic index, have been
demonstrated in experimental models of both type 1 and
type 2 diabetic nephropathy [64, 65].

The benefits of vitamin B compounds in lowering
AGE accumulation have been extensively investigated.
Pyridoxamine, a vitamin By derivative, prevents the for-
mation of AGEs from Amadori intermediates [58, 59] in
addition to cleavage of 3-deoxyglucosone-reactive car-
bonyl intermediates [66]. Not surprisingly, the inhibitory
actions of pyridoxamine on AGE accumulation are asso-
ciated with concurrent improvements in renal function
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in experimental models [67]. More importantly, in phase
IT studies in patients with diabetic renal disease, a treat-
ment effect was observed on the rise in serum creatinine
with pyridoxamine [68].

Thiamine and benfotiamine are liposoluble deriva-
tives of vitamin B; which also exhibit AGE-lowering
properties. In contrast to pyridoxamine, benfotiamine
and thiamine are known to decrease the formation of re-
ducing sugars and intermediates from the polyol pathway
[69]. Both benfotiamine and thiamine have proven to be
beneficial in experimental models of diabetic nephropa-
thy [31,70]. Furthermore,administration of benfotiamine
to type 2 diabetic patients, who consumed a diet high in
AGE content, reduced circulating AGE levels and mark-
ers of oxidative stress [71]. However, another study has
demonstrated a lack of effect of benfotiamine on compli-
cation-causing pathways in type 1 diabetic patients [72].

Carnosine is a naturally occurring dipeptide which is
known to exist in the brain as well as many other tissues.
Importantly, it has a number of activities which aid in the
reduction of AGE accumulation. Specifically, in addition
to its anti-oxidant properties, carnosine also reacts with
aldehydes such as aldose and ketose sugars preventing
AGE formation [73-76]. Its protective benefits have been
demonstrated in models of experimental diabetic ne-
phropathy [77].

Cleavage of Pre-Formed AGEs

Advanced glycation products form non-reversible co-
valent cross-links within and between tissue proteins and
other organic compounds. Novel therapeutics such as N-
phenacylthiazolium bromide (N-PTB) [78] and alagebri-
um chloride (ALA) [79] cleave cross-links, allowing for
the clearance of glycated proteins via scavenger receptors
and renal excretion. The prototype N-PTB [78] had the
ability to cleave a-dicarbonyl intermediates in the AGE
formation pathway, as was shown in tail collagen experi-
ments [78]. Apparent toxicity and unexplainable increas-
es in blood pressure seen with PTB meant that it was not
arealistic therapeutic for development in humans [80]. A
more stable thiazolium derivative, ALA [79], was report-
ed to catalytically cleave pre-established AGE cross-links
between proteins, although the exact mechanisms of ac-
tion of ALA remain to be fully determined. Alagebrium
has proven to have utility in human isolated systolic hy-
pertension and diastolic heart failure [81].

Blockade of Cellular Receptors of AGEs
Binding of AGEs to proteins such as the receptor for
advanced glycation end products (RAGE) has been shown
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to mediate intracellular signalling pathways, modulate
gene expression and accelerate inflammation [82]. Dou-
ble transgenic mice which over-express RAGE in addi-
tion to being deficient in iNOS (inducible nitric oxide
synthase) exhibit renal hypertrophy, albuminuria, and
elevated serum creatinine relative to their wild type mice
[83].

Soluble forms of RAGE produced either from alterna-
tive gene splicing (esRAGE) [84] or by proteolysis (SRAGE)
[85, 86] show promise as a possible future therapeutic.
Plasma levels of sSRAGE have been shown to be lower in
type 1 diabetic patients [1, 87] and elevated in type 2 dia-
betics. Indeed, with the development and progression of
diabetic nephropathy, changes in circulating SRAGE con-
centrations are thought to be independently associated
with renal function [88-91]. In an experimental model
representative of type 2 diabetic nephropathy, adminis-
tration of SRAGE was shown to diminish albuminuria
and improve glomerulosclerosis [92].

Thiazolidinediones (TZDs) are known ligands for
peroxisome  proliferator-activated  receptor-gamma
(PPAR-v), which exhibit a number of beneficial actions
in diabetic nephropathy independent of insulin sensitiza-
tion. TZDs, specifically rosiglitazone, have recently been
identified as RAGE antagonists [14, 93, 94]. Interestingly,
rosiglitazone administered to type 2 diabetic subjects in-
creases soluble RAGE concentrations in addition to de-
creasing circulating AGE levels [95].

Metabolic Disturbances

Abnormalities in Glycaemic Control

A range of metabolic abnormalities in addition to hy-
perglycaemia are seen in the diabetic milieu. However, it
is obvious from studies in diabetic patients that eleva-
tions in circulating glucose are the predominant meta-
bolic abnormality and strict glycaemic control remains
the critical but often unattainable strategy to halt the pro-
gression of complications [5, 6]. As well as promoting the
formation of AGEs, chronic hyperglycaemia is also asso-
ciated with increased inflammation and expression of
associated inflammatory cytokines, such as MCP-1 [96],
and connective tissue growth factor (CTGF) [97]. In
spontaneously diabetic rats strict glycaemic control in-
hibited the formation of pentosidine in renal tissue, com-
pared with hyperglycaemia which promoted AGE accu-
mulation and associated complications [98]. Metformin,
an insulin sensitiser, both lowers serum glucose levels
and inhibits the formation of AGEs [60, 99]. Combination

Sourris/Harcourt/Forbes



therapy of metformin with either pioglitizone or rosigli-
tazone resulted in improved long-term glucose handling
[100]. However, the influence of other AGE inhibitors on
glycaemic control as well as cellular uptake of glucose has
not yet been defined. Similar results in retinal cells using
captopril [101] also showed a reduction in glucose-medi-
ated damage via GLUT-1 (membrane glucose transport
protein) and the results of both these studies appear to be
insulin-mediated occurrences.

Hyperlipidaemia

Hyperlipidaemia is a comorbidity often seen in dia-
betic patients and is thought to be an important contrib-
utor to progressive micro- and macrovascular complica-
tions. This is most clearly demonstrated by the renopro-
tection which is seemingly afforded with HMG CoA
reductase inhibitors [102-104]. Interestingly, the majority
of the AGE inhibitors assessed in this review (table 1)
have been reported to improve lipid profiles in diabetic
patients [99], as well as in experimental models of dia-
betic complications [31, 33, 64, 67, 69, 79, 105, 106]. Effects
of RAS blockers, SRAGE and TZDs in plasma lipids have
notbeen previously reported. It remains to be determined
as to the specific mechanism by which these benefits on
hyperlipidaemia are conferred. To date, none of these
therapies, however, has been shown to increase plasma
concentrations of HDL, although effects on reverse cho-
lesterol transport have been recently highlighted with
alagebrium, aminoguanidine [107], pyridoxamine and
metformin [108].

Effects of AGE Inhibition on Hemodynamic Pathways

The UK prospective diabetes study in type 2 diabetic
patients highlights the importance of hemodynamic in-
fluences in the development of DN. Diabetic subjects ran-
domised to receive tighter blood pressure control exhib-
ited a concomitant reduction in microalbuminuria and
clinical proteinuria [5]. To date the most effective treat-
ments for both type 1 and type 2 diabetic patients to retard
the progression of diabetic complications are anti-hyper-
tensives which target the renin-angiotensin system [7,
109]. Studies in the Ren-2 rat, a strain with genetic over-
activity of the RAS, show amelioration of renal injury fol-
lowing treatment with a selective inhibitor of AGE forma-
tion, ALT-946, which is an aminoguanidine derivative [3].
In addition, infusion of AGEs into healthy rats induces
diabetic-like changes in the renal RAS [4], suggesting that
advanced glycation can modulate the RAS [110].

Benefits on the hemodynamic system, primarily via
changesin blood pressure, have been exhibited by a num-

Commonalities among Methods of AGE
Blockade

ber of other therapeutics which also reduce the accumu-
lation of AGEs including alagebrium [79, 111], pyridox-
amine [67], OPB-9195 [112], TZDs and carnosine [113].

Reactive Oxygen Species

Reactive oxygen species are important intermediates
in the formation of AGEs and are often excessively gener-
ated in the kidney in diabetes [114]. In addition, concom-
itant dysregulation of anti-oxidant enzymes in diabetes
leads to a state of oxidative stress [114]. To date, it is un-
clear as to why antioxidants per se have demonstrated
such poor renoprotection in humans, despite exciting
positive preclinical research findings; however, it seems
evident that therapies such as vitamins may not be the
ideal antioxidant strategy in human DN. Most of the in-
hibitors listed in table 1, including vitamin B derivatives
[115, 116], metformin [117], OPB-9195 [112, 118], ACEi
[13, 111], AT1 antagonists [13], ALA [111] and sRAGE
[119], have exhibited beneficial effects on excess superox-
ide generation within tissues, associated with improve-
ments in the development and/or progression of diabetic
complications.

Vitamin B-related therapeutics are effective scaven-
gers of ROS intermediates. Pyridoxamine inhibits super-
oxide radical generation as well as preventing the pro-
gression of neuropathy and retinopathy [120]. In addi-
tion, benfotiamine and thiamine, vitamin B, derivatives,
have shown beneficial effects in normalising ROS pro-
duction and reducing the activity of aldose reductase
[69].

Our group has shown that induction of diabetes re-
sults in a 50% increase in mitochondrial ROS produc-
tion when kidneys were examined ex vivo. Treatment
with alagebrium in this STZ rat model resulted in at-
tenuation of both mitochondrial and cytosolic super-
oxide production [106]. Furthermore, glycation of mi-
tochondrial proteins in diabetic rat kidneys has been
associated with excess ROS production, inducing
abnormalities in the mitochondrial respiratory chain
complexes [121] which were prevented with administra-
tion of aminoguanidine [121]. Aspirin has also been
shown to decrease reactive oxygen species production,
in addition to increasing the production of NO in in vi-
tro experiments [96, 122].

Inhibition of Protein Kinase C (PKC) Activity by AGE

Inhibitors

There has been a growing body of evidence suggesting
the central role of PKC, which is broadly involved in sig-
nal transduction from the plasma membrane to the nu-
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cleus in diabetes-induced vascular dysfunction [123, 124].
PKC has 11 different isoforms many of which have been
shown to be involved in diabetic complications in par-
ticular nephropathy [24, 125, 126].

From all of the therapeutics targeting advanced glyca-
tion presented in this review, some 60% have been identi-
fied as having direct effects on PKC. We have recently
reported the attenuation of PKC-a phosphorylation and
translocation with ALA in both in vivo models of DN and
in vitro studies [106]. It remains to be determined if this
action of alagebrium on PKC-a phosphorylation partly
explains its renoprotective actions. Modulation of PKC
activity within the diabetic kidney has also been exhib-
ited by various vitamin B derivatives [31, 116]. Interest-
ingly, both ACEi and aminoguanidine prevent diabetes
associated increases in PKC-f activation in renal glo-
meruli [127].

The effects of aminoguanidine and ACEi on PKC-f3
activity were also observed at other sites of vascular in-
jury including the retina and mesenteric vascular bed [13,
128]. In addition, AT-1 receptor antagonists also attenu-
ate diabetes-induced increases in PKC-epsilon activity
within the diabetic heart [129]. Furthermore, modulation
of PKC has been demonstrated in vascular endothelial
cells with the insulin-sensitizing agent metformin [130]
and the anti-thrombotic therapeutic aspirin [122]. Hence,
once again we encounter the multi-faceted pathways
which are affected by blockade of advanced glycation or
AGE-mediated signalling pathways.

Nuclear Transcription Factor Kappa-B (NF-kB)

NF-kB is a transcription factor composed of two sub-
units, the most common of which are the p50 and p65
subunits [131] which are thought to be important modu-
lators of diabetic complications. The active p65 subunit,
in particular, is thought to be central in the activation of
numerous genes including cytokines, adhesion mole-
cules, NO synthase, angiotensinogen and many other in-
flammatory and proliferative proteins implicated in the
process of diabetic nephropathy [22, 131]. NF-kB is acti-
vated by a range of stimuli including glucose [132] and
ROS [133]. AGEs are also involved in activation of NF-kB
via a RAGE-dependent pathway leading to its transloca-
tion to the nucleus where it induces transcription of tar-
get genes such as IL-6 and TNF-a [134]. The diverse ac-
tions of NF-kB and the capacity of various factors such
as angiotensin II (AII) and AGEs to activate this tran-
scription factor [135, 136] are consistent with NF-kB
playing a pivotal role in the pathogenesis of diabetic com-
plications.
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Pyrrolidine dithiocarbamate (PDTC) is a NF-«kB in-
hibitor which has been used in both diabetic [137] and
non-diabetic animal models of renal disease where it is
renoprotective [138], although its toxicity does not allow
for direct translation to the clinical setting. As with ROS
and PKC, a number of currently available AGE-modulat-
ing therapies, almost 40% have been shown to affect NF-
kB activation and translocation. Indeed, our group has
demonstrated the importance of NF-kB in the pathogen-
esis of early renal macrophage infiltration in experimen-
tal diabetes, which could be modulated by interruption of
the RAS [137, 139]. Moreover, diabetes-induced increases
in NF-kB activation are prevented by numerous thera-
peutics including metformin [130], aspirin [140], vitamin
B derivatives [116], carnosine [141], and thiazolidinedio-
nes [14]. It is possible that NF-kB, like PKC, is a central
mediator which drives the downstream pathogenic con-
sequences of interactions between hemodynamic and
glucose-dependent pathways in diabetic vascular com-
plications. However, approaches to inhibit NF-kB have
not been explored fully in DN, most likely due to the in-
timate involvement of this transcription factor in a num-
ber of essential cellular processes including apoptosis.

Inflammatory Cytokines and Growth Factors

Diabetic nephropathy was not traditionally consid-
ered to be an inflammatory condition; however, there is
a growing body of evidence in recent times highlighting
the central role of inflammation in its development and
progression [79, 142-150]. Indeed, both hemodynamic
and metabolic factors involved in the development of di-
abetic complications such as nephropathy activate com-
mon downstream targets, including cytokines and
growth factors [151]. In particular, monocyte chemoat-
tractant protein (MCP-1), transforming growth factor-31
(TGF-B1), CTGF and vascular endothelial growth factor
(VEGF) have all been implicated in both experimental
and human studies to be involved in the development and
progression of diabetic nephropathy.

Monocyte Chemoattractant Protein-1 (MCP-1)

MCP-1 is a potent chemokine which encourages
monocyte/macrophageinfiltration into the kidney, which
likely contributes to the progression of DN. MCP-1 pro-
duction and secretion from damaged renal cells in diabe-
tes are postulated to be responses to hyperglycaemia sub-
sequently activating a number of signalling pathways
including those mediated by PKC and NF-«B [152].
Moreover, AGEs have also been identified as a specific
stimulus for the production of MCP-1 [152, 153] and are
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secreted by mesangial, epithelial and glomerular podo-
cytes [146, 152]. In an experimental model of type 2 dia-
betic nephropathy, a deficiency in MCP-1 resulted in a
significant reduction in renal inflammatory infiltration
and renoprotection. Furthermore, administration of
propagermanium, an antagonist of the MCP-1 receptor,
in a model of diabetic nephropathy resulted in reduced
renal hypertrophy and macrophage infiltration in renal
glomeruli [154]. Indeed, it has been demonstrated that
elevations in urinary excretion of MCP-1 may be a valid
diagnostic marker of diabetic nephropathy in type 2 dia-
betic patients [155]. These studies suggest that MCP-1 is
a central mediator of diabetic renal disease, although its
utility as a therapeutic target remains to be determined
[147].

Interestingly, many of the treatments which inhibit
AGE accumulation or AGE-dependent signalling appear
to be anti-inflammatory, although the specific cytokines
which they affect appears to vary. To date, improvements
in tissue MCP-1 expression are seen with a number of
AGE inhibitors such as AT-1 antagonists [156], amino-
guanidine [157], aspirin [97, 158], sSRAGE [159] and thia-
zolidinediones [14], all of which are known to modulate
other pathways.

Modulation of Growth Factors

Growth factors such as TGF-$3, a fibrogenic cytokine,
and CTGF, which is primarily induced by TGF-{1, have
been implicated as key effector molecules which promote
diabetic renal disease. TGF- is a superfamily with three
mammalian isoforms. The major isoform, TGF-B1, is
synthesised as an inactive or latent form, which subse-
quently is subjected to proteolytic cleavage leading to the
generation of the active form. TGF-B1 binds to the type
II receptor and subsequently binds to the type I receptor
[160] inducing phosphorylation and intracellular signal-
ling involving the SMAD proteins [161]. In vitro studies
have shown that a range of stimuli increase TGF-f1 ex-
pression including hyperglycaemia, AGEs, stretch, AII,
endothelin, lipids and various products of oxidative stress
such as F, isoprostanes, all factors relevant to DN [162-
167]. Ziyadeh’s group has previously examined the effects
of long-term administration of a neutralizing TGF-{31
antibody on renal function and structure in diabetic db/
db mice [168] and STZ diabetic mice [169]. Although
most of the benefits have been attributed to TGF-B1, Hill
et al. [170] suggested that another isoform, TGF-B2, is
closely linked to fibrogenesis in diabetic nephropathy. To
date, several anti-AGE therapies including alagebrium
[79], AT1 antagonists [171], sSRAGE [92], aminoguanidine

Commonalities among Methods of AGE
Blockade

[172], OPB-9195 [118] and aspirin [97] have been shown
to ameliorate diabetes-induced increases in TGF-f31. The
utility of TGF-B1 as a target for therapeutic intervention
in DN, however, is impeded by its essential role in inflam-
matory and immune processes. Therefore, it may be pref-
erable to modulate renal TGF-f1 levels by an alternative
approach such as therapies which focus on upstream ad-
vanced glycation pathways.

Connective Tissue Growth Factor

Another prosclerotic cytokine, CTGF, has increased
renal [173, 174] and, in particular, glomerular expression
in diabetes [173, 175] and elevated both in early and late
diabetic nephropathy in humans [176]. Currently, a phase
IT study of FG-3019, a humanised anti-CTGF antibody,
has been completed in patients with diabetic nephropa-
thy (microalbuminuria) which was well tolerated and im-
proved albuminuria. Subsequent studies are planned in
diabetic patients with macroalbuminuria (http://www.
fibrogen.com/trials).

CTGF expression is thought to be mediated by a num-
ber of factors common in diabetic nephropathy including
TGF-f1, hyperglycaemia and mechanical stretch [173].
Interestingly, AGEs have been reported to specifically in-
crease CTGF expression, initially in fibroblasts [177] but
subsequently in mesangial cells [177]. Indeed within our
own study in STZ-induced DN, the AGE inhibitor ami-
noguanidine ameliorated renal increases in CTGF [174].
Moreover, aspirin has also been shown to prevent the di-
abetes-mediated increase in CTGF and mesangial expan-
sion in experimental models of DN [97]. Currently, ef-
fects of other AGE-modifying regimens on CTGF have
not been fully elucidated.

Vascular Endothelial Growth Factor

VEGEF is a cytokine whose major role in diabetes was
initially considered to be central for the pathogenesis of
diabetic retinopathy and in particular retinal neovascu-
larisation. Recent findings, however, have demonstrated
the importance of VEGF within the diabetic kidney [92,
106, 118, 178, 179]. We and others have previously shown
both in vivo and in vitro decreases in VEGF expression
with a number of AGE inhibitors including alagebrium
[106], ACE inhibitors [106], sSRAGE [92] and OPB-9195
[118]. Despite this suppression of VEGF as a result of cur-
rent therapeutics, the benefits of VEGF suppression re-
main controversial with some studies suggesting that
VEGF blockade is renoprotective [179], whereas recent
studies, albeit in a non-diabetic context, suggest that
VEGEF is a critical renal survival factor and that blockade
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may in fact promote renal damage [180]. This is perhaps
best demonstrated by the differential effects seen with
anti-VEGF antibodies [192, 193]. Studies on the renal ef-
fects of blockade of VEGF receptor (VEGFR) signalling
are currently being performed. Indeed, a recent prelimi-
nary report has shown that SU5416, a VEGEFR tyrosine
kinase inhibitor, reduces albuminuria in db/db mice [181].
In experimental models of DN, VEGF expression is also
decreased by an inhibitor of AGE formation [182] and
with the AGE cross-link breaker ALA [106] further con-
firming the link between AGEs and VEGF expression.

Conclusions

Despite diverse molecular structures and varied mech-
anisms of action, each of the strategies reviewed here with
effects on the tissue accumulation of AGEs and/or rele-
vant signalling pathways appear to confer their end organ
protective benefits via a number of common downstream
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