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Abstract

AGE inhibitors may act by various mechanisms at different steps of advanced glycation endproduct (AGE) formation (depending on oxidative
stress and/or carbonyl stress) and AGE-mediated damage: trapping of reactive dicarbonyl species; antioxidant activity by transition metal chela-
tion; other antioxidant activity including free radical scavenging; AGE cross-link breaking; AGE receptor (RAGE) blocking; RAGE signaling
blocking; glycemia reduction by anti-diabetic therapy; aldose reductase inhibition; shunting of trioses-P towards the pentose-P pathway by trans-
ketolase activation. Most of the inhibitors have several sites of action. Practically one can distinguish drugs specifically developed as AGE
inhibitors or AGE breakers; RAGE and receptor signaling blockers; other therapeutic compounds which were found subsequently to possess
also AGE inhibitor activity, including dietary antioxidants. Encouraging results obtained in studies of various AGE inhibitors, conducted in vitro
and in diabetic animals, are summarized in this review. However most of the clinical trials have been more or less disappointing, in part because
of side effects; the long-term therapeutic interest of the most recently developed AGE inhibitors or breakers remains to be demonstrated in
diabetes.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Les inhibiteurs d’AGE peuvent agir par divers mécanismes aux différentes étapes de formation des AGE (liées au stress oxydant et/ou au
stress carbonylé) et de leur effets biologiques : capture des intermédiaires dicarbonylés réactifs ; activité antioxydante par chélation de métaux de
transition ; autre activité antioxydante, y compris le piégeage des radicaux libres ; clivage des liaisons croisées des AGE ; inhibition des récep-
teurs des AGE (RAGE) ; blocage des voies de signalisation des RAGE ; réduction de la glycémie par les antidiabetiques ; inhibition de 1’aldose
réductase ; court-circuitage des trioses-P vers la voie des pentoses-P par activation de la transcétolase. La plupart des inhibiteurs des AGE ont
plusieurs sites d’action. En pratique on peut distinguer les drogues développées spécifiquement comme inhibiteurs d’AGE ou cliveurs d’AGE ;
les inhibiteurs du RAGE et de ses voies de signalisation ; d’autres composés utilisés en thérapeutique et qui se sont révélés posséder également
des propriétés inhibitrices des AGE, auxquelles on peut rattacher des antioxydants naturels alimentaires. Cette revue présente les résultats obtenus
in vitro et chez I’animal diabétique qui montrent 1’intérét potentiel des inhibiteurs d’AGE. Cependant, la plupart des essais cliniques ont été plus
ou moins décevants, en partie a cause d’effets secondaires ; I’intérét thérapeutique a long terme des inhibiteurs ou des cliveurs d’AGE les plus

récents reste encore a établir.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The advanced glycation endproducts (AGEs) play an impor-
tant role in the development of chronic diabetic complications
[1]. Therefore inhibiting their formation and/or their deleter-
ious effects has been searched for as well as increasing their
breakdown and/or elimination. After a short review of AGE
formation and their effects on extracellular matrices and cells,
we shall consider different approaches of their pharmacological
inhibition.

2. AGE formation

The Maillard reaction products described by Louis Camille
Maillard in 1912 [2] were initially appreciated during food pre-
paration and heating when reducing sugars reacted with ami-
nogroups of aminoacids or proteins to produce flavorful and
brownish compounds also called AGEs. These exogenous diet-
ary AGEs were first studied in nutritional chemistry. When
HbA,. was discovered in diabetic patients, the importance of
the glycation reaction (glycosylation without enzymatic inter-
vention) and its advanced endogenous endproducts started to
be investigated. Galactose, fructose and ribose reacted quicker
than glucose with hemoglobin [3]. The classical pathway lead-
ing to AGEs through Amadori products such as HbA;. was
described (Fig. 1). Protein glycation is initiated by addition
reaction between a free aminogroup and the carbonyl group
of a sugar to form a reversible Schiff base (in a period of
hours). The latter can rearrange into a stable ketoamine or
Amadori product (over a period of days). Protein glycation is
a spontaneous reaction depending in vivo on the degree and
duration of hyperglycemia. The Amadori product can be trans-
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formed (in a period of weeks) into reactive dicarbonyl products
such as glucosones (for instance 1,4-deoxyglucosone, precur-
sor of glucosepane) to form AGEs, such as glucosepane
(Fig. 2). The Amadori product can also be fragmented by oxi-
dation (glycoxidation) to produce AGEs like carboxymethyl-
lysine (CML) or pentosidine [4] (Figs. 2 and 3). AGEs accu-
mulate mainly in proteins with long half-life, such as extra-
cellular matrix collagens. Recently an enzyme degrading Ama-
dori products has been described, fructosamine 3-kinase.

Other pathways for AGE formation have been described
(Fig. 3). Glucose can be directly oxidized in the presence of
catalytic metals and O, (autoxidation) [1,4] (Figs. 3 and 4).
Metal-catalyzed glucose autoxidation may be important in dia-
betes with renal insufficiency or/and atherosclerosis [4]. It
leads to the formation of glyoxal (CHO-CHO) and arabinose.
The latter pentose may react with proteins to form AGEs such
as pentosidine (Fig. 2).

Methylglyoxal (CH3-CO-::CHO) has been identified as a
major intracellular reactive dicarbonyl intermediate originating
from glycolysis: spontaneous dephosphorylation of glyceralde-
hyde-3-P and dihydroxyacetone-P at the triose-P isomerase
step results in methylglyoxal formation. In addition, ascorbic
acid, threonine and aminoacetone are methylglyoxal precursors
(Fig. 3). Aminoacetone is oxidized by semicarbazide-sensitive
amino-oxidase (SSAO) into methylglyoxal and H,O,. Methyl-
glyoxal may be catabolized by intracellular glyoxalases.
Methylglyoxal reacts with free lysine groups to make AGEs
such as carboxyethyl-lysine (CEL) or methylglyoxal lysine
dimer (MOLD) (Figs. 2 and 3). It reacts also with free arginine
groups to make hydroimidazolones. Methylglyoxal may be cat-
abolized by intracellular glyoxalases.
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Fig. 1. Example of the classical pathway of protein glycation by glucose leading to AGEs via Amadori products. The initial reaction between glucose and protein
amino group forms a reversible Schiff base which rearranges to a fructosamine group or Amadori product. With time Amadori products may form AGEs via

dicarbonyl intermediates such as protein-bound 1,4 deoxyglucosone.
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Inside cells with free non-insulin-dependent glucose trans-
port, such as endothelial cells, increased flux from glucose to
pyruvate and NADH into mitochondria leads to increased mito-
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Fig. 2. Chemical structures of three types of AGEs: (A) fluorescent cross-
linking AGEs such as pentosidine and crossline, (B) non-fluorescent cross-
linking AGEs such as glucosepane and MOLD, (C) non-cross-linking AGEs
such as CML and pyrraline.
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chondrial electron leakage and reduction of oxygen into super-
oxide anion, according to the “unifying theory of diabetic com-
plications” [7]. Superoxide anion is transformed by superoxide
dismutase into H>O,. This would result in oxidant damage to
glyceraldehyde 3-P dehydrogenase and activation of deleter-
ious pathways upstream of this enzyme: methylglyoxal derived
AGE formation, activation of protein kinase C, activation of
the hexosamine pathway leading to increased gene transcrip-
tion such as PAI-1, and increased aldose reductase (AR) activ-
ity which favors methylglyoxal and subsequent AGE produc-
tion (Fig. 4).

Oxidation of polyunsaturated fatty acids (lipoxidation) can
also lead to glyoxal or methylglyoxal, apart from the character-
istic advanced lipoxidation endproducts (ALEs) such as mal-
ondialdehyde or 4-hydroxynonenal. Glyoxal reacts with free
lysine groups to make CML or glyoxal lysine dimer (GOLD)
(Figs. 2 and 3). Glyoxal reacts with free arginine groups to
make hydroimidazolones.

Therefore some AGEs such as CML and CEL are endpro-
ducts of both glycoxidation and lipoxidation pathways. In con-
trast other AGEs such as pentosidine are produced only by gly-
coxidation.

According to their chemical structure, three types of AGEs
may be distinguished (Fig. 2): (A) fluorescent cross-linking
AGE:s such as pentosidine and crossline, (B) non-fluorescent
cross-linking AGEs such as glucosepane and MOLD, (C)
non-cross-linking AGEs (or adducts) such as CML and pyrra-
line.

3. Harmful effects of AGEs

The cross-linking AGEs alter the physico-chemical proper-
ties of proteins (particularly those with long half-life) and may
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Fig. 3. Main chemical pathways leading to AGE formation and selected AGEs of relevance to the Maillard reaction in vivo (from [4], with permission). * denotes a
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Fig. 4. Potential sites of inhibition of AGE formation and AGE-mediated damage: (1) trapping of reactive dicarbonyl species; (2) antioxidant activity by transition
metal (M?") chelation; (3) other antioxidant activity including free radical scavenging; (4) AGE cross-link cleavage (by AGE breakers); (5) AGE receptor (RAGE)
blocking; (6) AGE receptor (RAGE) signaling blocking; (7) glycemia reduction by anti-diabetic therapy; (8) aldose reductase inhibition; (9) shunting of trioses-P
towards the pentose-P pathway by transketolase activation. Excessive reactions of protein amino-groups with reactive dicarbonyl species are characteristic of
carbonyl stress. Glycoxidation, glucose autoxidation and lipoxidation contribute to oxidant stress.

thus influence their functional properties [5]. This is the case,
for instance, for insoluble long-lived glomerular basement
membrane (GBM) proteins and other extracellular matrix pro-
teins [6].

Circulating AGEs may bind to cell membrane receptors and
elicit intracellular damage. Cells possess different receptors for
AGEs: macrophage scavenger receptors type I and II, galectin-
3 (AGE-R3), oligosaccharyl transferase-48 (AGE-R2), but the
best studied is the receptor for AGEs (RAGE). RAGE can be
stimulated by CML and other AGEs, but also different ligands
including S-100 calgranulins which are a group of pro-
inflammatory cytokines, amphoterin, amyloid-f and other
fibrillar proteins. Expression of RAGE is enhanced in certain
cells during diabetes and inflammation. Interaction of AGEs
with RAGE on the membrane of cells such as macrophages,
mesangial or endothelial cells, pericytes, causes intracellular
oxidative stress and activation of nuclear factor NF-kB via acti-
vation of the mitogen-activated protein (MAP) kinase signaling
pathway (Fig. 4). NF-kB modulates gene transcription for var-
ious factors: endothelin-1, vascular endothelial growth factor
(VEGF), transforming growth factor B (TGF-B), pro-
inflammatory cytokines such as interleukins IL-1a, IL-6 and
tumor necrosis factor a (TNF-a). There is also enhanced
expression of adhesion molecules such as vascular cell adhe-
sion molecule VCAM-1 and intercellular adhesion molecule
(ICAM-1), of extracellular proteins like laminin and type IV
collagen, in addition to other effects such as increased vascular
permeability or angiogenesis.

AGEs have been shown to be implicated in the development
of diabetic complications [1,8]. But the relative importance of
their role is still discussed. Moreover not only endogenous

AGEs seem to be pathogenic, but exogenous dietary AGEs
from cooked food, recovered in the circulation, might also con-
tribute to some extent to the development of diabetic complica-
tions [9].

4. Pharmacological inhibition of AGEs

Intervention against the Maillard reaction in vivo may be
situated at different steps of AGE formation and AGE-
mediated damage (Fig. 4):

e trapping of reactive dicarbonyl species;

e antioxidant activity by transition metal chelation;

e other antioxidant activity including free radical scavenging;

e AGE cross-link cleavage (by AGE breakers);

e AGE receptor blocking;

e AGE receptor signaling blocking;

e glycemia reduction by anti-diabetic therapy;

e AR inhibition;

e shunting of trioses-P towards the pentose-P pathway by
transketolase activation.

Most of the inhibitors have several sites of action. Practi-
cally, one can distinguish: drugs specifically developed as
AGE inhibitors or AGE breakers; RAGE and receptor signal-
ing blockers; other therapeutic compounds which were found
subsequently to possess also AGE inhibitor activity, including
dietary antioxidants.
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4.1. Drugs specifically developed as AGE inhibitors or AGE
breakers (Table 1)

4.1.1. Aminoguanidine (AMG)

The possibility to prevent the formation of AGEs was
reported for the first time by Brownlee et al. [10] with AMG.
AMG prevented formation of fluorescent AGEs and glucose-
derived collagen cross-links in vitro. AMG administration to
diabetic rats also prevented formation of fluorescent AGEs and
cross-linking of arterial wall connective tissue proteins. Since
then, the use of AMG to prevent AGE formation in vitro and in
vivo has given evidence of the involvement of AGEs in patho-
logical states and in aging.

In model systems, the mechanism by which AMG inhibits
AGEs formation has been shown to involve trapping of reac-
tive dicarbonyl intermediates [11,12]. At high concentration,
there is also significant reaction with other carbonyl com-
pounds. AMG can react with pyruvate under physiological
conditions to form a hydrazone adduct [12]. Similarly, there
is a slow reaction with glucose to form B-p glucopyranosyl
AMG-adduct [13,14]. Furthermore, AMG is an inhibitor of
nitric oxide synthase (NOS), more potent on inducible form
of NOS (iNOS; IC50 = 31 uM) than on neuronal NOS (nNOS;
IC50 = 170 uM) and endothelial NOS (eNOS; IC50 = 330 uM)
[15]. Since the IC50 for inhibition of protein glycation by
methyl glyoxal in human plasma is 203 uM [16], it is likely
that in all cases where AMG is used to prevent glycation reac-
tion, it is also competent to inhibit iNOS and probably nNOS
[12]. AMG is also a potent and irreversible inhibitor of SSAO
which catalyses the conversion of aminoacetone to methyl-
glyoxal [17]. In retinal Muller cells, AMG has been found to
act as an antioxidant, quenching hydroxyl radicals and lipid
peroxidation [18]. A decrease in lipid peroxidation is also
observed in vivo in streptozotocin (STZ) diabetic rats treated
by AMG (1 g/l in drinking water) for 9 weeks [19] and in
diabetic rabbits (400 mg/l in drinking water for 10 months)
[18]. Price et al. [20] proposed that AMG and many other
AGE inhibitors at millimolar concentration, act primarily by
chelating or antioxidant activity rather than carbonyl-trapping
activity. But triazine adducts of carbonyl compounds were
identified during glycoxidation and lipoxidation reactions in
vivo [11] confirming that in addition to its chelating and anti-
oxidant activity AMG also acts as a true scavenger of carbonyl
compounds.

AMG effects on experimental diabetic nephropathy — In
STZ-diabetic rats, administration of AMG (1 g/l in drinking
water) for 32 weeks, attenuated albuminuria and prevented
mesangial expansion. There was a concomitant decrease in glo-
merular and tubular fluorescence and AGE content evaluated
with anti-AGE antibodies [21,22]. In the same model, AMG
has been found to attenuate overexpression of TGF-f1 and
PDGF-f and to reduce type IV collagen deposition in glomer-
uli [23]. AMG reduced the expression of TNF-a and iNOS in
glomeruli of STZ-diabetic rats at 52 weeks of diabetes [24].
However, when comparing the effects of AMG with the effects
of a NOS inhibitor, L-NAME, in STZ- diabetic rats, Soulis et

al. [25] found that AMG but not L-NAME could prevent albu-
minuria and renal AGE levels. This suggests that the effect of
AMG is mediated predominantly by AGE formation inhibition.
In STZ-diabetic rats, AMG prevented increases in PKC activity
in the glomeruli, retina and mesenteric artery, in parallel with
suppression of albuminuria [26]. However, in STZ-diabetic
baboons, AMG (10 m/kg) given subcutaneously daily over a
period of 4 years prevented GBM thickening, but was not able
to prevent albuminuria [27]. In Otsuka Long Evans Tokushima
fatty (OLEFT) rats (a model of type 2 diabetes), AMG (1 g/l in
drinking water for 40 weeks) prevented development of albu-
minuria, mesangial expansion and GBM thickening [28].
AMG effects on experimental diabetic retinopathy — Treat-
ment of STZ-diabetic rats for 26 weeks with AMG (25 mg/kg
IP daily) prevented accumulation of AGEs at branching sites of
precapillary arterioles and abnormal endothelial cell prolifera-
tion; pericyte loss was diminished. Under the same experimen-
tal conditions, treatment with AMG (0.5 g/l in drinking water)
for 75 weeks also decreased the acellular capillaries and micro-
aneuvrysms [29]. In another experiment in diabetic rats treated
with AMG (0.5 g/1), acellular capillaries increased over the first
24 weeks of treatment and then stopped increasing for the rest
of the study (52 weeks), suggesting that AMG does not inhibit
the initial phase of experimental diabetic retinopathy in rats
[30]. In diabetic rats treated either with AMG, an AGE- and
NOS inhibitor, or L-NAME, a NOS inhibitor, and 2,3-dia-
mino-phenazine, an AGE- but not NOS inhibitor, Roufail et
al. [31] have observed that only AMG and 2,3-diamino-phena-
zine prevented depletion in nNOS-containing neurons, charac-
teristic of diabetic retinopathy suggesting that this effect is
mediated by the inhibition of AGE formation. However, in
alloxan-diabetic rats, AMG (0.5 g/l in drinking water for
32 weeks) can inhibit accelerated death of retinal capillary
cells and development of retinopathy without modifying
AGE-hemoglobin levels or tail collagen pentosidine level,
fluorescence intensity and thermal breaking time [32]. Same
results were observed in a 5-year study in diabetic dogs:
AMG (200 mg/kg daily in tablets) inhibited development of
retinal microaneuvrysms and acellular capillaries, but had no
influence on pentosidine levels in tail collagen and aorta [33].
AMG effects on experimental diabetic neuropathy — In STZ-
diabetic rats, AMG administration (25 or 50 mg daily) has
been found to normalize reduction in sciatic nerve blood flow
and to improve conduction, in a dose-dependent manner [34].
In similar experiments, AMG was found to improve motor
nerve conduction velocity [35,36] and to inhibit accumulation
of fluorescent AGEs in nerves [35]. The effects of AMG on
nerve conduction velocity were completely blocked by co-
treatment with NG-nitro-L-arginine (a NOS inhibitor) suggest-
ing a neurovascular mechanism for AMG effects involving
improved NO activity due to decreased oxidative stress [37]. In
STZ-diabetic rats, AMG did not influence neuroaxonal dystro-
phy, a feature of autonomic neuropathy [38]. AMG (10 mg/kg
daily SC) did not restore conduction velocity or autonomic
dysfunction over a 5-year period in diabetic baboons [39].
AMG effects on aging process — Aging is characterized by
structural and functional changes of the cardiovascular and
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Table 1
Drugs specifically developed as AGE inhibitors or AGE breakers

Generic name Structure
I- AGE inhibitors
- Guanidine structure
Aminoguanidine NH
(Pimagedine) " wJLNH_-NH!

- Thiazolidine structure
OPB-91295

- Ureido/carboxamidophenoxy-isobutyric acids

LR-9

LR-90

- Quinolinoxy propionic acid
LR-74

- Vitamins
Pyridoxamine
(Pyridorin)

Benfotiamine

II- AGE breakers
- N-phenacyl thiazolium structure
PTB

ALT-711
(Alagebrium)

Sapeas
o

Ho&ogN?WG%OW{:HOo%M

renal systems. It has been proposed that most of these cardio-
vascular and renal modifications were related to glycation of
proteins and production of AGEs [40]. Fischer 344 and Spra-
gue Dawley rats treated from 6 to 24 months of age by AMG
(1 g/l in drinking water) had a reduced content of AGEs in
plasma, heart, blood vessels and kidneys; the age-related car-
diac hypertrophy and the decrease in endothelial-dependent
vasodilatory response reported in the control aging rats were
prevented in the older animals. The treatment also reduced pro-
teinuria and glomerular sclerosis without modification of GBM
thickness [41]. AMG administration in drinking water (1 g/l) to
Fisher 344 rats from 24 to 30 months of age prevented the end-
life increase in arterial stiffness and cardiac hypertrophy with-
out any change in total collagen and elastin content of the arter-
ial wall suggesting a reduction in the AGE-induced cross-

linking of heart and arterial wall extra cellular matrix proteins
[42]. In a similar experiment, AMG did not affect collagen
glycation or glycoxidation, except for a modest decrease in
tail tendon break time [43].

Clinical trials were designed to evaluate the safety and effi-
cacy of AMG in retarding the rate of progression of renal dis-
ease in patients with overt diabetic nephropathy. Two phase III
clinical trials were conducted and completed in 1998: ACTION
I with type 1 diabetic patients and ACTION II with type 2
diabetic patients. ACTION I was a randomized, double blind,
placebo-controlled trial comparing two dose levels of AMG
(150 and 300 mg daily) with placebo on the progression of
nephropathy in 690 patients. The primary end point was the
time to doubling of serum creatinine. The secondary end
point included evaluation of proteinuria, kidney function and
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retinopathy. AMG therapy lowered LDL and triglycerides and
increased HDL with the low dose but not with the high dose.
In the combined dose group, a reduced progression of retino-
pathy and a non-significant tendency towards slower serum
creatinine doubling time were observed [44]. ACTION II was
performed in 559 patients with similar protocol and end points
[45] but due to safety concerns and apparent lack of efficacy,
the study was discontinued. Although beneficial effects of
AMG against diabetic complications have been widely con-
firmed in animal models, AMG did not achieve successful clin-
ical trials. This may be attributed to its rapid renal clearance, its
moderate dicarbonyl scavenging at pharmacological concentra-
tions in vivo and its toxicity [12].

4.1.2. OPB-9195

OPB-9195 is a hydrazine derivative, as AMG. In vitro, it
inhibits pentosidine generation from diabetic and uremic
plasma [46]. It also inhibits, in a dose-dependent manner, for-
mation of pentosidine and CML from a variety of individual
precursors including ribose, glucose and ascorbate as well as
formation of two ALEs, malondialdehyde-lysine and 4-
hydroxynonenal from arachidonate [47]. Its mechanism of
action appears similar to that proposed for AMG. OPB-9195
traps dicarbonyl intermediates of advanced glycation more effi-
ciently than AMG [46]. Moreover its chelating activity is much
more efficient than that of AMG or pyridoxamine (PM) [20].

In vivo, OPB-9195 prevented several biological effects
associated with AGE formation. In OLETF rats, it prevented
progression of glomerular sclerosis and AGE deposition in
glomeruli. In addition, circulating AGE levels and albumin
excretion were highly decreased in spite of persistent hypergly-
cemia [48]. Blockade of type IV collagen production and over-
production of TGF-p and VEGF seems to be involved in the
renal protective effects of OPB-9195 [49]. In RAGE overex-
pressing mice, oral administration of OPB-9195 for 5 months
reduced serum AGE levels and prevented glomerular sclerosis
[50]. In STZ-diabetic rats, OPB-9195 (60 mg/kg given by daily
gavages for 24 weeks) improved tibial motor nerve conduction
velocity and restored sciatic nerve Na'K"ATPase activity.
Expression of immunoreactive AGEs in the sciatic nerve was
reduced [51]. Recently, long-term administration of OPB-9195
(36 weeks) has been found to prevent retinal microvascular cell
apoptosis in Goto-Kakizaki rats, a type 2 diabetic model [52].

Unfortunately, the clinical trials of this compound given to
diabetic patients were hampered, as for AMG, by side effects
related to the characteristic trapping of pyridoxal, resulting in
vitamin B6 deficiency syndrome [53].

4.1.3. LR compounds

Recently, two new classes of aromatic compounds, deriva-
tives of aryl (and heterocyclic) ureido- and aryl (and heterocyc-
lic) carboxamido- phenoxy-isobutyric acids and benzoic acids,
have been reported to be potential inhibitors of glycation and
AGE formation [54]. Three of these compounds prevented the
development of diabetic nephropathy: LR-90, LR-9 and LR-74.

The mechanism of action of these compounds is not yet
well determined. In vitro studies showed that they could
directly interact with several reactive dicarbonyl species such
as glyoxal, methyglyoxal and glycolaldehyde. They inhibited
post-Amadori AGE formation more efficiently than PM. They
were found to be potent chelators of Cu®" with IC50’s of 50—
275 uM; this probably explains that they can suppress hydro-
xyl radical production during sugar autoxidation and glycation
reactions [54].

In vivo, LR-90 treatment (50 mg/l in drinking water) of
STZ-diabetic rats for 32 weeks inhibited increase in albumi-
nuria and serum creatinine level. LR-90 prevented glomerulo-
sclerosis, tubular degeneration and collagen deposition in the
kidney. It also decreased AGE accumulation in kidney glomer-
uli and nitrotyrosine deposition in renal cortex. Interestingly,
LR-90-treated diabetic rats showed higher body weight than
untreated diabetic controls [55].

LR-9 or LR-74 (50 mg/l in drinking water for 32 weeks)
also inhibited albuminuria and plasma creatinine increase in
STZ-diabetic rats. They reduced CML accumulation in kidney
glomeruli and tubules, AGE-linked fluorescence and cross-
linking of tail collagen, CML and CEL content of skin col-
lagen. Additionally, they lowered plasma cholesterol and tri-
glycerides levels and inhibited lipid peroxidation [56].

4.1.4. Pyridoxamine

PM is one of the three natural forms of vitamin B6. In vitro,
PM unlike AMG strongly inhibited CML formation from iso-
lated Amadori products [57]. PM does not interact directly
with Amadori intermediates, but interferes with the post-
Amadori oxidative reactions by binding catalytic redox metal
ions [58]. PM also traps reactive low molecular weight carbo-
nyl compounds derived from either sugars or lipids, inhibiting
AGE and ALE adducts [59,60]. Moreover, adducts of PM
deriving from catabolites of arachidonic and linoleic acids
were detected in urine of PM-treated diabetic, hyperlipemic
and control rats indicating that carbonyl-trapping mechanism
is operative in vivo [61].

In STZ-diabetic rats, Degenhard et al. [62] showed that, at
comparable doses (1 g/l in drinking water for 7 months), PM
was superior to AMG in retarding the development of renal
disease as measured by albuminuria and plasma creatinine.
PM caused a partial correction of the increase in glomerular
volume without significant effects on GBM and mesangial
volume. PM corrected hyperlipidemia and plasma lactate/pyr-
uvate ratio without modifying blood glucose and HbA, levels;
in skin collagen, PM decreased cross-linking, fluorescence and
CML and CEL (but not pentosidine) levels. In a similar model,
PM prevented retinal vascular alterations: capillary loss, lami-
nin upregulation and CML accumulation [63].

Zucker obese (fa/fa) rats are characterized by obesity,
hyperlipdemia, mild hypertension and insulin resistance.
Despite the fact that they are normoglycemic, increases in
CML, CEL, pentosidine and fluorescence in the skin collagen
are similar to those observed in STZ-diabetic rats. PM (2 g/l in
drinking water) decreased hypertension and vascular wall
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thickening, CML and CEL levels in skin collagen, triglycer-
ides, cholesterol, and creatinine plasma levels and nearly nor-
malized albuminuria [64]. These results, observed in hyperlipi-
demic non-hyperglycemic rats, show that lipids may be as
responsible as carbohydrate for the chemical modifications of
proteins and the development of complications in diabetes.

In type 1 diabetic patients, PM showed a favorable safety
profile. Phase II trials are ongoing to evaluate the efficacy of
PM in inhibiting the progression of proteinuria and hyperlipi-
demia in diabetic patients with early stage kidney disease [65].

4.1.5. Benfotiamine

Benfotiamine is a lipophilic derivative of thiamine (vitamin
B1) designed to be a better activator of transketolase (convert-
ing glyceraldehyde-3-phosphate into pentose-5-phosphate)
than thiamine itself. Thus, its proposed mechanism of action
involves shunting of triose glycolytic intermediates towards
the reductive pentose pathway [69]. Indeed, in human endothe-
lial cells and bovine retinal pericytes cultured in high glucose,
benfotiamine increased transketolase expression or activity, but
also reduced aldose reductase mRNA expression and intracel-
lular glucose and sorbitol levels [66].

Administration of benfotiamine for 9 months completely
prevented hexosamine and PKC activation, intracellular AGE
formation and appearance of acellular capillaries in retina of
diabetic rats [67]. In STZ-diabetic rats, preventive administra-
tion of benfotiamine (but not thiamine) for 3 months increased
motor nerve conduction velocity and inhibited neural
imidazole-type AGE and CML accumulation [68]. Oral admin-
istration of benfotiamine at high dose (70 mg/kg daily) to STZ-
diabetic rats increased transketolase expression in renal glo-
meruli and conversion of triose phosphate to ribose-5 phos-
phate; it decreased the levels of different AGEs, microalbumi-
nuria and PKC activation [69]. Recently, benfotiamine was
shown to accelerate healing of ischemic limbs in diabetic
mice. It increased muscular transketolase activity, prevented
ischemia-induced toe necrosis, and improved hind limb perfu-
sion and endothelium-dependent vasodilatation. In addition
benfotiamine prevented vascular accumulation of AGEs and
induction of proapoptotic caspase-3 while restoring proper
expression of eNOS and protein kinase B (PKB) in ischemic
muscle. Increased PKB activity seems to play an important role
since the benefits of benfotiamine are nullified by dominant-
negative PKB construct [70].

4.1.6. AGE breakers: PTB and ALT-711

AGE breakers have been shown to cleave AGE-protein
cross-links by some tests in vitro. However their beneficial
effects observed in diabetic animals or in patients are not
necessarily or exclusively due to a cleaving mechanism,
which is very difficult to demonstrate in vivo.

Vasan et al. [71] showed for the first time that it was possi-
ble to break established glucose-derived AGE-protein cross-
links by pharmacological agents: N-phenacyl! thiazolinium bro-
mide (PTB) was reported to cleave AGE cross-link between
albumin and collagen and reduce the amount of immunoglobu-

lin bound to circulating red blood cells. In STZ-diabetic rats,
PTB could prevent vascular AGE accumulation [72]. However,
other studies showed that, although PTB could reduce AGE
cross-links in vitro, it did not cleave AGE cross-links formed
in skin collagen of diabetic rats [73,74]. Because of the instable
nature of PTB in physiological buffers [75], several analogs
have been developed. N-phenacyl-4,5-dimethylthiazolium
chloride (ALT-711) has been studied, almost exclusively.

ALT-711 has been claimed to catalytically break established
AGE cross-links between proteins. However some investiga-
tors attributed the pharmacological effects of ALT-711 to inhi-
bition of AGE formation, in addition to its effects on AGE
cross-links. Yang et al. [74] reported that ALT-711 did not
improve the solubility of tail tendon and skin collagen isolated
from 7 months-diabetic rats and incubated with ALT-711. But
a treatment of STZ-diabetic rats with ALT-711 initiated after
2 months of diabetes normalized large artery stiffness assessed
by characteristic input impedance and systemic arterial compli-
ance; however, no difference in cross-linking between controls
and treated animals could be observed with the use of differ-
ential scanning colorimetry [76]. As ALT-711 and its hydroly-
tic products have been shown to be among the most potent
inhibitors of copper-catalyzed oxidation of ascorbate, it has
been proposed that ALT-711 might act in vivo by preventing
metal-catalyzed glycoxidation [20].

Regardless of its mechanism of action, the results of experi-
mental and clinical studies have indicated the potential utility
of ALT-711 in reversing the complications of aging and dia-
betes. In STZ-diabetic rats, curative administration of ALT-711
(1 mg/kg daily, IP, for 1-3 weeks) reversed the increase in
large artery stiffness as measured by systemic arterial compli-
ance, aortic impedance and distensibility [77]. Oral administra-
tion of ALT-711 (1 mg/kg daily) for 1 month to aged dogs
resulted in improvement of end-diastolic and stroke volume
indices and decrease in left ventricular stiffness [78]. In aged
monkeys treated with ALT-711 (1 mg/kg, IM, daily for
11 days) a prolonged decrease in pulse wave velocity and aor-
tic stiffness was observed in comparison with the pre-treatment
values [79]. Other studies examined the combined effects of
aging and diabetes or hypertension on left ventricular function
and myocardial collagen content. Mongrel dogs, 9—12-year-old
at the beginning of the experiment, were fed with ALT-711
(1 mg/kg daily for 1 month) 5 months after the induction of
diabetes with alloxan. The treatment restored left ventricular
ejection fraction, reduced left ventricular mass and aortic stiff-
ness and reversed myocardial collagen types I and III accumu-
lation. ALT-711 also increased left ventricular collagen solubi-
lity [80]. In 45-week-old spontaneous hypertensive rats (SHR),
oral administration of ALT-711 (1 mg/kg daily for 4 months)
reduced left ventricular and aortic mass indices and left ventri-
cular hydroxyproline concentrations. In older SHR, ALT-711
reduced systolic pressure and albuminuria [81].

In STZ-diabetic rats, oral administration of ALT-711
(10 mg/kg) from the 16th to the 32nd week of diabetes resulted
in a significant decrease in renal CML and RAGE immunos-
taining, albumin excretion rate, gene expression of TGF-BI,
connective tissue growth factor (CTGF) and type IV collagen
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[82]; the renoprotective effects of ALT 711 might, in part,
occur via PKC-a inhibition in the renal cortex [83]. In a
model of diabetes associated with atherosclerosis, the STZ-
diabetic and apolipoprotein-E-deficient mouse, preventive
ALT-711 treatment (20 mg/kg, daily for 20 weeks) reduced
albuminuria, renal RAGE and AGE R-2 gene expression and
glomerular accumulation of type I and type IV collagens with-
out modifying triglycerides and HbA . levels [84]. In the same
model, ALT-711 (10 mg/kg, daily for 20 weeks) reduced ather-
osclerotic plaque areas in thoracic and abdominal regions, but
not in aortic arch region, and attenuated the overall increase in
plaque collagen content with a more profound reduction in
type IV collagen than in type III collagen and no effect on
type 1 collagen; this was accompanied by a reduction in
RAGE expression and CML content in aorta [85].

Phase II clinical trials of ALT-711 were initiated in 1998.
Effects of ALT-711 on blood pressure and vascular elasticity
were tested by Kass et al. in 93 individuals over the age of 50
with evidence of vascular stiffening. The patients who received
ALT 711 (210 mg/day, for 8 weeks) showed reduction in arter-
ial pulse pressure and increase in large artery compliance.
ALT-711 was well tolerated with a similar proportion of
patients reporting an adverse experience in ALT-711 and pla-
cebo groups, as reported in [86]. Another phase II clinical trial
was initiated by Kitzman et al. to examine the effectiveness of
ALT-711 in diastolic dysfunction. Patients were receiving
210 mg ALT-711 twice a day on an open-label, out-patient
basis for at least 12 weeks. A reduction in left ventricular
mass and left ventricular diastolic filling was observed, as men-
tioned in [86]. Recently, 23 patients, (mean age: 71 years),
with stable diastolic heart failure, were enrolled in a 16-week
open-label trial. Treatment with ALT-711 (410 mg, daily) in
patients with diastolic heart failure resulted in a decrease in
left ventricular mass and improvement in left ventricular dia-
stolic filling and quality of life [87].

4.2. RAGE blockers: sRAGE, anti-RAGE antibodies
and signaling inhibitors

Other approaches to prevent AGE-mediated damage include
(A) trapping of circulating AGEs before their binding to AGE
receptors, (B) inhibition of AGE interaction with its receptor
and (C) inhibition of signal transduction mediated by AGE
receptor activation [88].

The prototype “drug” for the trapping of AGE ligands is
soluble RAGE (SRAGE) which is the truncated form of
RAGE, constituted by the extracellular ligand-binding domain
of the receptor. In db/db mice, treatment with murine SRAGE
(50 mg/day, IP, for 19 weeks) decreased albuminuria, glomer-
uloslerosis and GBM thickening [89]. In STZ-diabetic and
apolipoprotein-E-deficient mice, administration of SRAGE for
6 weeks inhibited expression of VCAM-1, tissue factor, TGF-
B, fibronectin and type IV collagen in aorta [90]. Furthermore
Bucciarelli et al. [91] demonstrated, in the same animal model,
that SRAGE was able to suppress established atherosclerosis.
Administration of sSRAGE in db/db mice restored effective

wound healing and decreased levels of cytokines such as
TNF-a, IL-6 and of metalloproteinase-2,-3 and -9 [92].

Recently, it has been found that human vascular cells
express a novel splice variant coding for a soluble RAGE pro-
tein named endogenous secretory RAGE (esRAGE). It neutra-
lizes AGE effects in endothelial cells and is present in human
serum [93]. Interestingly, decreased plasma levels of esSRAGE
were found in patients with essential hypertension [94], rheu-
matoid arthritis [95] or renal insufficiency [96].

Another endogenous AGE trapping system is [ysozyme.
Lysozyme has been reported to accelerate renal AGE clear-
ance, to inhibit AGE-promoted PDGF-f and type IV collagen
expression in mesangial cells and to improve albuminuria in
db/db mice [97].

Inhibition of AGE-RAGE interaction may be realized by
anti-RAGE antibodies. Indeed, administration of an anti-
murine RAGE antibody for 2 weeks in db/db mice resulted in
a decrease in kidney weight, mesangial volume and urinary
albumin excretion and normalization of creatinine clearance
and GBM thickness [98]. Same results were observed in a
type 1 diabetes model [99].

Cerivstatin, a hydroxy-methyl-glutaryl-CoA inhibitor and
cucurmin can inhibit signal transduction mediated by AGE
receptor activation. Addition of cerivastatin or cucurmin to cul-
tured human endothelial cells resulted in complete inhibition of
the AGE-induced increase in NF-kB and activator protein-1
(AP-1) activity and VEGF mRNA upregulation [100].

4.3. Other therapeutic compounds which were found
subsequently to possess

4.3.1. Anti-diabetic drugs: metformin and pioglitazone

In addition to the indirect effect of all anti-diabetic agents
on AGE formation by lowering blood glucose level, some anti-
diabetic agents possess also direct AGE inhibitor activity.

Metformin is a biguanide compound used in the manage-
ment of type 2 diabetes which has structural similarities to ami-
noguanidine. In vitro studies indicated that metformin could
react with reactive dicarbonyl species, mainly methylglyoxal
or glyoxal, to form guanidine-dicarbonyl adducts [101,102].

In STZ-diabetic rats, metformin at high dosage (500-
650 mg/kg daily for 10 weeks) could reduce AGE deposition
in sciatic nerve and renal cortex, in a dose-dependent manner,
with improvement of sciatic nerve conduction velocity [103].

In type 2 diabetic patients, administration of metformin, for
2 months at various dosages, resulted in decrease in methyl-
glyoxal (but not in 3-deoxyglucosone) plasma levels, only
with the highest dosage (> 1 g/day) [104].

Pioglitazone is a member of the family of thiazolidine-dione
compounds, sensitizing peripheral tissues to insulin. Its struc-
ture is similar to that of the thiazolidine derivative OPB-9195.
In vitro studies indicate that pioglitazone is also an inhibitor of
glycation and AGE formation [105]. Its mechanism of action is
yet to be determined. However, administration of pioglitazone
to KK/Ta mice resulted in decrease in albuminuria, indepen-
dently of systemic blood pressure or blood glucose level [106].
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4.3.2. Angiotensin converting enzyme inhibitors (ACEIs),
vasopeptidase inhibitors (VPIs) and angiotensin II receptor
inhibitors (AIIRIs)

Ramipril, an ACEI, and valsartan, an AIIRI, have been
found to prevent albuminuria and to attenuate glomerular ultra-
structural changes in STZ-diabetic rats [107]. Miyata et al.
[108] showed that these effects could be linked, at least in
part, to an inhibition of AGE formation: in vitro olmesartan,
an AIIRI, and ramipril, an ACEI, at the same molar concentra-
tion, inhibited formation of pentosidine and CML during incu-
bation of non-uremic-diabetic, non-diabetic-uremic or diabetic-
uremic plasmas. They were more efficient than AMG or PM.
Unlike AMG or PM, they do not trap reactive dicarbonyl pre-
cursors of AGEs, but inhibit their production by chelating tran-
sition metals and blocking various oxidative steps including
hydroxyl and carbon-centered radicals, mainly at the pre-
Amadori and only to a lesser extent at the post-Amadori steps
of AGE formation (Fig. 3). These effects are common to six
tested AIIRIs: olmesartan, candesartan, irbesartan, losartan and
valsartan. A similar but milder effect is observed with four
ACEIs: temocaprilat, enalaprilat, captopril and perindoprilat.

These observations were confirmed in vivo. Ramipril (3 mg/
1 in drinking water for 12 weeks) attenuated renal AGE accu-
mulation in STZ-diabetic rats. However RAGE overexpression
and NF-KB activation were not affected by the treatment
[109]. Similar reno-protective effects were observed with val-
sartan in STZ-diabetic rats [110] and olmesartan in AGE-
treated rats [111]. In STZ-diabetic rats, ramipril (3 mg/kg in
drinking water for 24 weeks), as AMG, completely prevented
glomerular PKC activation and albuminuria, suggesting that
inhibition of PKC activity could be linked to the reno-
protective effect of the compound [112]. Interestingly, it was
observed in SHR, that combination of perindoprilat (ACEI,
2 mg/l) and of AMG (1 g/l) offers superior reno-protection
than that observed with each monotherapy [113].

ACE inhibition modulates expression of the splice variants
of RAGE [114]. Incubation of bovine aortic endothelial cells in
high glucose with ramipril showed increase in sSRAGE secre-
tion. In STZ-diabetic rats, ramipril (3 mg/l in drinking water
for 24 weeks) reduced levels of skin collagen CML and pento-
sidine as well as circulating and renal AGEs. Upregulation of
the renal genes of all three variants of RAGE, particularly the
splice variant C (SRAGE), was observed in animals treated by
ramipril. SRAGE protein levels were increased in renal cells
showing AGE-binding ability. Plasma sRAGE level was
restored by ACEIL. Similarly, in type I diabetic patients treated
with the ACEI perindopril for 24 months, increase in plasma
SRAGE was observed as compared with placebo-treated
patients. Thus, it has been proposed that ACE inhibition may
reduce the accumulation of AGEs in diabetes partly by increas-
ing production and secretion of SRAGE. However, ACEI and
AIIRI could differ in their mechanism of action since, in the
KK/Ta mice, candesartan (AIIRI, 4 mg/kg daily from 6 to
28 weeks of age) reduced renal AGE accumulation, albumi-
nuria, mRNA and protein expression of p47phox, iNOS and
RAGE expression [115].

Recently, it has been found that VPIs combining ACE and
neutral peptidase inhibition could be potent AGE inhibitor.
AVE7688, a VPI, (but not the ACEI ramipril) attenuated
renal accumulation of 3-deoxyglucosone-imidazolone, pentosi-
dine and CML, in Zucker diabetic fatty rats. The doses of AVE
7688 and ramipril have been chosen to present the same inhi-
bitory activity towards ACE. During glycation reactions in
vitro, AVE 7688 demonstrated potent chelating activity and
inhibited metal-catalyzed formation of pentosidine and CML
[116]. In diabetic apolipoprotein-E-efficient mice, omapatrilat,
another VPI, reduced atherosclerosis, renal structural injury
and albuminuria. Omapatrilat conferred superior
protection than the ACEI quinalapril [117].

reno-

4.3.3. Aldose reductase inhibitors (ARI)

Under hyperglycemic conditions, excess glucose is metabo-
lized into sorbitol by the AR pathway. This process may be
pursued by fructose formation leading to 3-deoxyglocozone
and methylglyoxal (Fig. 4), which are known to accelerate for-
mation of AGEs. Moreover, it has been found that AGEs can
upregulate gene expression of AR in smooth muscle cells lead-
ing to increased activity in cultured smooth muscle cells as
well as in incubated aortic strips [118].

Sorbinil, an ARI decreased AGE-related fluorescence in
skin collagen of diabetic rats [119]. However, Cohen et al.
[120] showed that treatment with sorbinil for 30 days in STZ-
diabetic rats lowered glomerular fructose concentration, but
did not influence collagen fluorescence in GBM. Ponalrestat,
another ARI, retarded fluorescence in aorta but not in glomer-
uli and renal tubules, of STZ-diabetic rats [121]. In diabetic
dogs, administration of sorbinil for 5 years prevented sorbitol
accumulation in erythrocytes and defective nerve conduction,
but had no beneficial effects on renal structure or albuminuria
[122,123].

In type 2 diabetic patients treatment with epalrestat (150 mg
daily) for 2 months lowered erythrocyte CML level, without
changes in glycemia [124]. This effect might be linked to the
metal-chelating and antioxidant properties of AR inhibitors
reported in erythrocytes of diabetic rats [125]. In another
study, plasma CML concentration did not change in #pe 2
diabetic patients after the administration of epalrestat for
3 months except in the patients whose CML concentration
before treatment was higher than 3 mU/ml [126].

4.3.4. Anti-inflammatory drugs: diclophenac and salicylates

Studies in STZ-diabetic rat [127] or in diabetic patients
[128] have shown that anti-inflammatory drugs such as aspirin,
salicylates or ibuprofen can protect against diabetic cataract.
This led to the suggestion that aspirin and others anti-
inflammatory drugs might interfere with AGE formation. In
collagen fibers incubated with glucose, aspirin decreased ther-
mal rupture time [129]. In the same type of model, aspirin was
found to inhibit pentosidine formation [130,131]. Aspirin and
salicylates may act as free radical scavengers and/or metal ion
chelators [132].
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In STZ-diabetic rats, aspirin or sodium salicylate treatment
for 4 weeks (240 mg/kg, daily) was able to prevent the rise in
thermal rupture time without affecting glycation [129]. In dia-
betic dogs, aspirin (20 mg/kg daily for 5 years) inhibited devel-
opment of retinal hemorrhages and acellular capillaries over
the 5 years period, but did not affect albuminuria or nerve con-
duction velocity deficit. No effect in accumulation of pentosi-
dine or immuno-reactive AGEs in aorta or tail tendon collagen
was observed [33]. In type 2 diabetic patients, aspirin treatment
(100 mg daily for 1 year) decreased skin pentosidine levels
[133].

In vitro studies have shown that diclofenac can block at
least one of the major glycation sites of human serum albumin
[134]. In diabetic db/db mice, administration of diclofenac
(3 mg/kg twice daily) normalized plasma concentration of gly-
cated albumin within days after initiation of treatment and
maintained glycated albumin within the normal range through-
out the study (12 weeks); it also reduced the overexpression of
mRNA encoding for type IV collagen in renal cortex [135].

4.3.5. Tenilsetam

Tenilsetam or 3-(2-thienyl)-2-piperazinone is an anti-
dementia drug used for the treatment of Alzheimer’s disease.
During incubation of lysozyme or collagen with high glucose,
tenilsetam inhibited lysozyme polymerization due to advanced
glycation and prevented reduction of collagen digestibility, in a
dose-dependent manner. In STZ-diabetic rats, tenilsetam
(50 mg/kg daily for 16 weeks) inhibited AGE-fluorescence in
renal cortex and aorta. The mechanism of action remains to be
elucidated [136].

4.3.6. Dietary antioxidants

Antioxidants may protect against glycoxidation, glucose
autoxidation and lipoxidation.

Vitamin E (800 mg/day) was reported to reduce AGE accu-
mulation in arterial walls of diabetic patients [137]. However it
failed to efficiently prevent diabetic complications [138].

Vitamin C is antioxidant, however dehydroascorbic acid is a
potent glycating agent, particularly in the aging human lens
[139].

Flavonoids are present in plant-derived foods. They show
important antioxidant and AGE inhibitor properties, according
to their structure, in vitro [140] and in vivo: they decrease skin
collagen-linked fluorescence in diabetic rats [141]; besides
they decrease albuminuria and restore albuminemia [142].
These dietary antioxidants of low toxicity could be promising
for the treatment of diabetic complications, although their ther-
apeutic potential in humans remains to be investigated.

5. Conclusion

Strict glycemic control is the first therapy for reducing AGE
formation in diabetes. However for a similar glycemic control,
patients appear to be more or less susceptible to diabetic com-
plications, suggesting a genetic control of oxidant and/or car-
bonyl stress. Skin AGEs appear to be powerful predictors of

the risk of developing diabetic complications even after ajust-
ment for mean HbA;. [143]. This underlines the interest of
AGE inhibitors or breakers. Despite encouraging results
obtained in vitro and in animal studies, most of the clinical
trials have been more or less disappointing, in part because of
side effects; the long-term therapeutic interest of the most
recentlydevelopedA GEinhibitorsotbreakersremainstobe
demonstrated.
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